metabelian, supersoluble, monomial
Aliases: D6.5D6, C12.32D6, Dic3.6D6, C4.17S32, (C4×S3)⋊4S3, (S3×C12)⋊1C2, C3⋊D12⋊7C2, D6⋊S3⋊6C2, C3⋊2(C4○D12), C32⋊2Q8⋊6C2, C32⋊3(C4○D4), C6.5(C22×S3), (C3×C6).5C23, (S3×C6).6C22, (C3×C12).31C22, C3⋊Dic3.13C22, (C3×Dic3).6C22, C2.8(C2×S32), (C4×C3⋊S3)⋊6C2, (C2×C3⋊S3).13C22, SmallGroup(144,141)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D6.D6
G = < a,b,c,d | a6=b2=1, c6=d2=a3, bab=a-1, ac=ca, ad=da, bc=cb, dbd-1=a3b, dcd-1=c5 >
Subgroups: 288 in 88 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C2×C4, D4, Q8, C32, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C4○D4, C3×S3, C3⋊S3, C3×C6, Dic6, C4×S3, C4×S3, D12, C3⋊D4, C2×C12, C3×Dic3, C3⋊Dic3, C3×C12, S3×C6, C2×C3⋊S3, C4○D12, D6⋊S3, C3⋊D12, C32⋊2Q8, S3×C12, C4×C3⋊S3, D6.D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C22×S3, S32, C4○D12, C2×S32, D6.D6
Character table of D6.D6
class | 1 | 2A | 2B | 2C | 2D | 3A | 3B | 3C | 4A | 4B | 4C | 4D | 4E | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | |
size | 1 | 1 | 6 | 6 | 18 | 2 | 2 | 4 | 1 | 1 | 6 | 6 | 18 | 2 | 2 | 4 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | -1 | -1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -2 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | 1 | 1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | -2 | -2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 0 | -2 | 0 | -1 | 2 | -1 | 2 | 2 | 0 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | -1 | -1 | 2 | 2 | -1 | -1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | 0 | -2 | 0 | -1 | 2 | -1 | -2 | -2 | 0 | 2 | 0 | 2 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | 1 | -2 | -2 | 1 | 1 | -1 | -1 | 0 | 0 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 0 | 2 | 0 | -1 | 2 | -1 | -2 | -2 | 0 | -2 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | 1 | 1 | -2 | -2 | 1 | 1 | 1 | 1 | 0 | 0 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 0 | 2 | 0 | -1 | 2 | -1 | 2 | 2 | 0 | 2 | 0 | 2 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | orthogonal lifted from S3 |
ρ16 | 2 | 2 | 2 | 0 | 0 | 2 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | 0 | 0 | 2 | 2 | -1 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | orthogonal lifted from S3 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 2i | -2i | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 2i | -2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | -2i | 2i | 0 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | -2i | 2i | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | 2i | -2i | 0 | 0 | 0 | -2 | 1 | 1 | 0 | 0 | -√-3 | √-3 | i | -i | 2i | -2i | -i | i | √3 | -√3 | 0 | 0 | complex lifted from C4○D12 |
ρ20 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | -2i | 2i | 0 | 0 | 0 | -2 | 1 | 1 | 0 | 0 | √-3 | -√-3 | -i | i | -2i | 2i | i | -i | √3 | -√3 | 0 | 0 | complex lifted from C4○D12 |
ρ21 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 2i | -2i | 0 | 0 | 0 | 1 | -2 | 1 | √-3 | -√-3 | 0 | 0 | -2i | 2i | -i | i | -i | i | 0 | 0 | -√3 | √3 | complex lifted from C4○D12 |
ρ22 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | 2i | -2i | 0 | 0 | 0 | -2 | 1 | 1 | 0 | 0 | √-3 | -√-3 | i | -i | 2i | -2i | -i | i | -√3 | √3 | 0 | 0 | complex lifted from C4○D12 |
ρ23 | 2 | -2 | 0 | 0 | 0 | -1 | 2 | -1 | -2i | 2i | 0 | 0 | 0 | -2 | 1 | 1 | 0 | 0 | -√-3 | √-3 | -i | i | -2i | 2i | i | -i | -√3 | √3 | 0 | 0 | complex lifted from C4○D12 |
ρ24 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | -2i | 2i | 0 | 0 | 0 | 1 | -2 | 1 | √-3 | -√-3 | 0 | 0 | 2i | -2i | i | -i | i | -i | 0 | 0 | √3 | -√3 | complex lifted from C4○D12 |
ρ25 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | 2i | -2i | 0 | 0 | 0 | 1 | -2 | 1 | -√-3 | √-3 | 0 | 0 | -2i | 2i | -i | i | -i | i | 0 | 0 | √3 | -√3 | complex lifted from C4○D12 |
ρ26 | 2 | -2 | 0 | 0 | 0 | 2 | -1 | -1 | -2i | 2i | 0 | 0 | 0 | 1 | -2 | 1 | -√-3 | √-3 | 0 | 0 | 2i | -2i | i | -i | i | -i | 0 | 0 | -√3 | √3 | complex lifted from C4○D12 |
ρ27 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | -4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from C2×S32 |
ρ28 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 4 | 4 | 0 | 0 | 0 | -2 | -2 | 1 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 1 | 1 | 0 | 0 | 0 | 0 | orthogonal lifted from S32 |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | 4i | -4i | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | i | -i | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | -2 | 1 | -4i | 4i | 0 | 0 | 0 | 2 | 2 | -1 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | -i | i | 0 | 0 | 0 | 0 | complex faithful |
(1 3 5 7 9 11)(2 4 6 8 10 12)(13 23 21 19 17 15)(14 24 22 20 18 16)
(1 24)(2 13)(3 14)(4 15)(5 16)(6 17)(7 18)(8 19)(9 20)(10 21)(11 22)(12 23)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 18 7 24)(2 23 8 17)(3 16 9 22)(4 21 10 15)(5 14 11 20)(6 19 12 13)
G:=sub<Sym(24)| (1,3,5,7,9,11)(2,4,6,8,10,12)(13,23,21,19,17,15)(14,24,22,20,18,16), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,18,7,24)(2,23,8,17)(3,16,9,22)(4,21,10,15)(5,14,11,20)(6,19,12,13)>;
G:=Group( (1,3,5,7,9,11)(2,4,6,8,10,12)(13,23,21,19,17,15)(14,24,22,20,18,16), (1,24)(2,13)(3,14)(4,15)(5,16)(6,17)(7,18)(8,19)(9,20)(10,21)(11,22)(12,23), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,18,7,24)(2,23,8,17)(3,16,9,22)(4,21,10,15)(5,14,11,20)(6,19,12,13) );
G=PermutationGroup([[(1,3,5,7,9,11),(2,4,6,8,10,12),(13,23,21,19,17,15),(14,24,22,20,18,16)], [(1,24),(2,13),(3,14),(4,15),(5,16),(6,17),(7,18),(8,19),(9,20),(10,21),(11,22),(12,23)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,18,7,24),(2,23,8,17),(3,16,9,22),(4,21,10,15),(5,14,11,20),(6,19,12,13)]])
G:=TransitiveGroup(24,228);
D6.D6 is a maximal subgroup of
C32⋊C4≀C2 C24.63D6 C24.64D6 C24.D6 C32⋊D8⋊5C2 C32⋊D8⋊C2 C32⋊Q16⋊C2 S3×C4○D12 D12⋊23D6 Dic6.24D6 D12⋊12D6 D12⋊13D6 D12.25D6 Dic6.26D6 D12⋊16D6 D6.D18 C12.91S32 (S3×C6).D6 D6.S32 Dic3.S32 C12.73S32 C12.95S32
D6.D6 is a maximal quotient of
C62.20C23 D6⋊Dic6 Dic3.D12 C62.23C23 C62.25C23 C62.29C23 C62.32C23 C62.35C23 C62.37C23 C62.38C23 C62.40C23 C62.44C23 C4×D6⋊S3 C4×C3⋊D12 C62.75C23 D6⋊D12 C62.82C23 C62.85C23 C4×C32⋊2Q8 D6.D18 C12.91S32 (S3×C6).D6 D6.S32 Dic3.S32 C12.73S32 C12.95S32
Matrix representation of D6.D6 ►in GL4(𝔽5) generated by
0 | 0 | 3 | 0 |
0 | 1 | 0 | 1 |
3 | 0 | 1 | 0 |
0 | 4 | 0 | 0 |
0 | 1 | 0 | 1 |
0 | 0 | 3 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 2 | 0 |
3 | 0 | 1 | 0 |
0 | 3 | 0 | 3 |
1 | 0 | 0 | 0 |
0 | 2 | 0 | 0 |
0 | 0 | 0 | 4 |
0 | 0 | 2 | 0 |
0 | 2 | 0 | 0 |
1 | 0 | 0 | 0 |
G:=sub<GL(4,GF(5))| [0,0,3,0,0,1,0,4,3,0,1,0,0,1,0,0],[0,0,0,1,1,0,2,0,0,3,0,2,1,0,0,0],[3,0,1,0,0,3,0,2,1,0,0,0,0,3,0,0],[0,0,0,1,0,0,2,0,0,2,0,0,4,0,0,0] >;
D6.D6 in GAP, Magma, Sage, TeX
D_6.D_6
% in TeX
G:=Group("D6.D6");
// GroupNames label
G:=SmallGroup(144,141);
// by ID
G=gap.SmallGroup(144,141);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-3,-3,121,50,490,3461]);
// Polycyclic
G:=Group<a,b,c,d|a^6=b^2=1,c^6=d^2=a^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=a^3*b,d*c*d^-1=c^5>;
// generators/relations
Export