Copied to
clipboard

G = Dic39order 156 = 22·3·13

Dicyclic group

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: Dic39, C393C4, C26.S3, C6.D13, C2.D39, C3⋊Dic13, C78.1C2, C132Dic3, SmallGroup(156,5)

Series: Derived Chief Lower central Upper central

C1C39 — Dic39
C1C13C39C78 — Dic39
C39 — Dic39
C1C2

Generators and relations for Dic39
 G = < a,b | a78=1, b2=a39, bab-1=a-1 >

39C4
13Dic3
3Dic13

Smallest permutation representation of Dic39
Regular action on 156 points
Generators in S156
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78)(79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156)
(1 95 40 134)(2 94 41 133)(3 93 42 132)(4 92 43 131)(5 91 44 130)(6 90 45 129)(7 89 46 128)(8 88 47 127)(9 87 48 126)(10 86 49 125)(11 85 50 124)(12 84 51 123)(13 83 52 122)(14 82 53 121)(15 81 54 120)(16 80 55 119)(17 79 56 118)(18 156 57 117)(19 155 58 116)(20 154 59 115)(21 153 60 114)(22 152 61 113)(23 151 62 112)(24 150 63 111)(25 149 64 110)(26 148 65 109)(27 147 66 108)(28 146 67 107)(29 145 68 106)(30 144 69 105)(31 143 70 104)(32 142 71 103)(33 141 72 102)(34 140 73 101)(35 139 74 100)(36 138 75 99)(37 137 76 98)(38 136 77 97)(39 135 78 96)

G:=sub<Sym(156)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,95,40,134)(2,94,41,133)(3,93,42,132)(4,92,43,131)(5,91,44,130)(6,90,45,129)(7,89,46,128)(8,88,47,127)(9,87,48,126)(10,86,49,125)(11,85,50,124)(12,84,51,123)(13,83,52,122)(14,82,53,121)(15,81,54,120)(16,80,55,119)(17,79,56,118)(18,156,57,117)(19,155,58,116)(20,154,59,115)(21,153,60,114)(22,152,61,113)(23,151,62,112)(24,150,63,111)(25,149,64,110)(26,148,65,109)(27,147,66,108)(28,146,67,107)(29,145,68,106)(30,144,69,105)(31,143,70,104)(32,142,71,103)(33,141,72,102)(34,140,73,101)(35,139,74,100)(36,138,75,99)(37,137,76,98)(38,136,77,97)(39,135,78,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78)(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156), (1,95,40,134)(2,94,41,133)(3,93,42,132)(4,92,43,131)(5,91,44,130)(6,90,45,129)(7,89,46,128)(8,88,47,127)(9,87,48,126)(10,86,49,125)(11,85,50,124)(12,84,51,123)(13,83,52,122)(14,82,53,121)(15,81,54,120)(16,80,55,119)(17,79,56,118)(18,156,57,117)(19,155,58,116)(20,154,59,115)(21,153,60,114)(22,152,61,113)(23,151,62,112)(24,150,63,111)(25,149,64,110)(26,148,65,109)(27,147,66,108)(28,146,67,107)(29,145,68,106)(30,144,69,105)(31,143,70,104)(32,142,71,103)(33,141,72,102)(34,140,73,101)(35,139,74,100)(36,138,75,99)(37,137,76,98)(38,136,77,97)(39,135,78,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78),(79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156)], [(1,95,40,134),(2,94,41,133),(3,93,42,132),(4,92,43,131),(5,91,44,130),(6,90,45,129),(7,89,46,128),(8,88,47,127),(9,87,48,126),(10,86,49,125),(11,85,50,124),(12,84,51,123),(13,83,52,122),(14,82,53,121),(15,81,54,120),(16,80,55,119),(17,79,56,118),(18,156,57,117),(19,155,58,116),(20,154,59,115),(21,153,60,114),(22,152,61,113),(23,151,62,112),(24,150,63,111),(25,149,64,110),(26,148,65,109),(27,147,66,108),(28,146,67,107),(29,145,68,106),(30,144,69,105),(31,143,70,104),(32,142,71,103),(33,141,72,102),(34,140,73,101),(35,139,74,100),(36,138,75,99),(37,137,76,98),(38,136,77,97),(39,135,78,96)]])

Dic39 is a maximal subgroup of
Dic3×D13  S3×Dic13  C39⋊D4  C39⋊Q8  Dic78  C4×D39  C397D4  Dic117  C393C12  C3⋊Dic39
Dic39 is a maximal quotient of
C393C8  Dic117  C3⋊Dic39

42 conjugacy classes

class 1  2  3 4A4B 6 13A···13F26A···26F39A···39L78A···78L
order12344613···1326···2639···3978···78
size112393922···22···22···22···2

42 irreducible representations

dim111222222
type+++-+-+-
imageC1C2C4S3Dic3D13Dic13D39Dic39
kernelDic39C78C39C26C13C6C3C2C1
# reps11211661212

Matrix representation of Dic39 in GL2(𝔽157) generated by

47126
13866
,
2523
82132
G:=sub<GL(2,GF(157))| [47,138,126,66],[25,82,23,132] >;

Dic39 in GAP, Magma, Sage, TeX

{\rm Dic}_{39}
% in TeX

G:=Group("Dic39");
// GroupNames label

G:=SmallGroup(156,5);
// by ID

G=gap.SmallGroup(156,5);
# by ID

G:=PCGroup([4,-2,-2,-3,-13,8,98,2307]);
// Polycyclic

G:=Group<a,b|a^78=1,b^2=a^39,b*a*b^-1=a^-1>;
// generators/relations

Export

Subgroup lattice of Dic39 in TeX

׿
×
𝔽