Extensions 1→N→G→Q→1 with N=C80 and Q=C2

Direct product G=N×Q with N=C80 and Q=C2
dρLabelID
C2×C80160C2xC80160,59

Semidirect products G=N:Q with N=C80 and Q=C2
extensionφ:Q→Aut NdρLabelID
C801C2 = D80φ: C2/C1C2 ⊆ Aut C80802+C80:1C2160,6
C802C2 = C16⋊D5φ: C2/C1C2 ⊆ Aut C80802C80:2C2160,7
C803C2 = C5×D16φ: C2/C1C2 ⊆ Aut C80802C80:3C2160,61
C804C2 = D5×C16φ: C2/C1C2 ⊆ Aut C80802C80:4C2160,4
C805C2 = C80⋊C2φ: C2/C1C2 ⊆ Aut C80802C80:5C2160,5
C806C2 = C5×SD32φ: C2/C1C2 ⊆ Aut C80802C80:6C2160,62
C807C2 = C5×M5(2)φ: C2/C1C2 ⊆ Aut C80802C80:7C2160,60

Non-split extensions G=N.Q with N=C80 and Q=C2
extensionφ:Q→Aut NdρLabelID
C80.1C2 = Dic40φ: C2/C1C2 ⊆ Aut C801602-C80.1C2160,8
C80.2C2 = C5×Q32φ: C2/C1C2 ⊆ Aut C801602C80.2C2160,63
C80.3C2 = C52C32φ: C2/C1C2 ⊆ Aut C801602C80.3C2160,1

׿
×
𝔽