metacyclic, supersoluble, monomial, 2-hyperelementary
Aliases: Dic40, C16.D5, C5⋊1Q32, C80.1C2, C10.3D8, C2.5D40, C4.3D20, C20.26D4, C8.15D10, C40.16C22, Dic20.1C2, SmallGroup(160,8)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic40
G = < a,b | a80=1, b2=a40, bab-1=a-1 >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 111 41 151)(2 110 42 150)(3 109 43 149)(4 108 44 148)(5 107 45 147)(6 106 46 146)(7 105 47 145)(8 104 48 144)(9 103 49 143)(10 102 50 142)(11 101 51 141)(12 100 52 140)(13 99 53 139)(14 98 54 138)(15 97 55 137)(16 96 56 136)(17 95 57 135)(18 94 58 134)(19 93 59 133)(20 92 60 132)(21 91 61 131)(22 90 62 130)(23 89 63 129)(24 88 64 128)(25 87 65 127)(26 86 66 126)(27 85 67 125)(28 84 68 124)(29 83 69 123)(30 82 70 122)(31 81 71 121)(32 160 72 120)(33 159 73 119)(34 158 74 118)(35 157 75 117)(36 156 76 116)(37 155 77 115)(38 154 78 114)(39 153 79 113)(40 152 80 112)
G:=sub<Sym(160)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,111,41,151)(2,110,42,150)(3,109,43,149)(4,108,44,148)(5,107,45,147)(6,106,46,146)(7,105,47,145)(8,104,48,144)(9,103,49,143)(10,102,50,142)(11,101,51,141)(12,100,52,140)(13,99,53,139)(14,98,54,138)(15,97,55,137)(16,96,56,136)(17,95,57,135)(18,94,58,134)(19,93,59,133)(20,92,60,132)(21,91,61,131)(22,90,62,130)(23,89,63,129)(24,88,64,128)(25,87,65,127)(26,86,66,126)(27,85,67,125)(28,84,68,124)(29,83,69,123)(30,82,70,122)(31,81,71,121)(32,160,72,120)(33,159,73,119)(34,158,74,118)(35,157,75,117)(36,156,76,116)(37,155,77,115)(38,154,78,114)(39,153,79,113)(40,152,80,112)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,111,41,151)(2,110,42,150)(3,109,43,149)(4,108,44,148)(5,107,45,147)(6,106,46,146)(7,105,47,145)(8,104,48,144)(9,103,49,143)(10,102,50,142)(11,101,51,141)(12,100,52,140)(13,99,53,139)(14,98,54,138)(15,97,55,137)(16,96,56,136)(17,95,57,135)(18,94,58,134)(19,93,59,133)(20,92,60,132)(21,91,61,131)(22,90,62,130)(23,89,63,129)(24,88,64,128)(25,87,65,127)(26,86,66,126)(27,85,67,125)(28,84,68,124)(29,83,69,123)(30,82,70,122)(31,81,71,121)(32,160,72,120)(33,159,73,119)(34,158,74,118)(35,157,75,117)(36,156,76,116)(37,155,77,115)(38,154,78,114)(39,153,79,113)(40,152,80,112) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,111,41,151),(2,110,42,150),(3,109,43,149),(4,108,44,148),(5,107,45,147),(6,106,46,146),(7,105,47,145),(8,104,48,144),(9,103,49,143),(10,102,50,142),(11,101,51,141),(12,100,52,140),(13,99,53,139),(14,98,54,138),(15,97,55,137),(16,96,56,136),(17,95,57,135),(18,94,58,134),(19,93,59,133),(20,92,60,132),(21,91,61,131),(22,90,62,130),(23,89,63,129),(24,88,64,128),(25,87,65,127),(26,86,66,126),(27,85,67,125),(28,84,68,124),(29,83,69,123),(30,82,70,122),(31,81,71,121),(32,160,72,120),(33,159,73,119),(34,158,74,118),(35,157,75,117),(36,156,76,116),(37,155,77,115),(38,154,78,114),(39,153,79,113),(40,152,80,112)]])
Dic40 is a maximal subgroup of
C160⋊C2 Dic80 D16.D5 C5⋊Q64 D80⋊7C2 C16.D10 D16⋊3D5 SD32⋊D5 D5×Q32 C3⋊Dic40 Dic120
Dic40 is a maximal quotient of
C40.78D4 C80⋊13C4 C3⋊Dic40 Dic120
43 conjugacy classes
class | 1 | 2 | 4A | 4B | 4C | 5A | 5B | 8A | 8B | 10A | 10B | 16A | 16B | 16C | 16D | 20A | 20B | 20C | 20D | 40A | ··· | 40H | 80A | ··· | 80P |
order | 1 | 2 | 4 | 4 | 4 | 5 | 5 | 8 | 8 | 10 | 10 | 16 | 16 | 16 | 16 | 20 | 20 | 20 | 20 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 2 | 40 | 40 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
43 irreducible representations
dim | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | - | + | + | - |
image | C1 | C2 | C2 | D4 | D5 | D8 | D10 | Q32 | D20 | D40 | Dic40 |
kernel | Dic40 | C80 | Dic20 | C20 | C16 | C10 | C8 | C5 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 4 | 8 | 16 |
Matrix representation of Dic40 ►in GL2(𝔽241) generated by
239 | 58 |
183 | 115 |
148 | 42 |
58 | 93 |
G:=sub<GL(2,GF(241))| [239,183,58,115],[148,58,42,93] >;
Dic40 in GAP, Magma, Sage, TeX
{\rm Dic}_{40}
% in TeX
G:=Group("Dic40");
// GroupNames label
G:=SmallGroup(160,8);
// by ID
G=gap.SmallGroup(160,8);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,73,79,218,122,579,69,4613]);
// Polycyclic
G:=Group<a,b|a^80=1,b^2=a^40,b*a*b^-1=a^-1>;
// generators/relations
Export