metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary
Aliases: C5⋊2C32, C40.7C4, C80.3C2, C20.5C8, C16.2D5, C10.2C16, C8.3Dic5, C2.(C5⋊2C16), C4.2(C5⋊2C8), SmallGroup(160,1)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C5⋊2C32 |
Generators and relations for C5⋊2C32
G = < a,b | a5=b32=1, bab-1=a-1 >
(1 57 72 115 133)(2 134 116 73 58)(3 59 74 117 135)(4 136 118 75 60)(5 61 76 119 137)(6 138 120 77 62)(7 63 78 121 139)(8 140 122 79 64)(9 33 80 123 141)(10 142 124 81 34)(11 35 82 125 143)(12 144 126 83 36)(13 37 84 127 145)(14 146 128 85 38)(15 39 86 97 147)(16 148 98 87 40)(17 41 88 99 149)(18 150 100 89 42)(19 43 90 101 151)(20 152 102 91 44)(21 45 92 103 153)(22 154 104 93 46)(23 47 94 105 155)(24 156 106 95 48)(25 49 96 107 157)(26 158 108 65 50)(27 51 66 109 159)(28 160 110 67 52)(29 53 68 111 129)(30 130 112 69 54)(31 55 70 113 131)(32 132 114 71 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
G:=sub<Sym(160)| (1,57,72,115,133)(2,134,116,73,58)(3,59,74,117,135)(4,136,118,75,60)(5,61,76,119,137)(6,138,120,77,62)(7,63,78,121,139)(8,140,122,79,64)(9,33,80,123,141)(10,142,124,81,34)(11,35,82,125,143)(12,144,126,83,36)(13,37,84,127,145)(14,146,128,85,38)(15,39,86,97,147)(16,148,98,87,40)(17,41,88,99,149)(18,150,100,89,42)(19,43,90,101,151)(20,152,102,91,44)(21,45,92,103,153)(22,154,104,93,46)(23,47,94,105,155)(24,156,106,95,48)(25,49,96,107,157)(26,158,108,65,50)(27,51,66,109,159)(28,160,110,67,52)(29,53,68,111,129)(30,130,112,69,54)(31,55,70,113,131)(32,132,114,71,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;
G:=Group( (1,57,72,115,133)(2,134,116,73,58)(3,59,74,117,135)(4,136,118,75,60)(5,61,76,119,137)(6,138,120,77,62)(7,63,78,121,139)(8,140,122,79,64)(9,33,80,123,141)(10,142,124,81,34)(11,35,82,125,143)(12,144,126,83,36)(13,37,84,127,145)(14,146,128,85,38)(15,39,86,97,147)(16,148,98,87,40)(17,41,88,99,149)(18,150,100,89,42)(19,43,90,101,151)(20,152,102,91,44)(21,45,92,103,153)(22,154,104,93,46)(23,47,94,105,155)(24,156,106,95,48)(25,49,96,107,157)(26,158,108,65,50)(27,51,66,109,159)(28,160,110,67,52)(29,53,68,111,129)(30,130,112,69,54)(31,55,70,113,131)(32,132,114,71,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );
G=PermutationGroup([[(1,57,72,115,133),(2,134,116,73,58),(3,59,74,117,135),(4,136,118,75,60),(5,61,76,119,137),(6,138,120,77,62),(7,63,78,121,139),(8,140,122,79,64),(9,33,80,123,141),(10,142,124,81,34),(11,35,82,125,143),(12,144,126,83,36),(13,37,84,127,145),(14,146,128,85,38),(15,39,86,97,147),(16,148,98,87,40),(17,41,88,99,149),(18,150,100,89,42),(19,43,90,101,151),(20,152,102,91,44),(21,45,92,103,153),(22,154,104,93,46),(23,47,94,105,155),(24,156,106,95,48),(25,49,96,107,157),(26,158,108,65,50),(27,51,66,109,159),(28,160,110,67,52),(29,53,68,111,129),(30,130,112,69,54),(31,55,70,113,131),(32,132,114,71,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])
C5⋊2C32 is a maximal subgroup of
C5⋊C64 D5×C32 C32⋊D5 C80.9C4 C5⋊D32 D16.D5 C5⋊SD64 C5⋊Q64 C15⋊3C32
C5⋊2C32 is a maximal quotient of
C5⋊2C64 C15⋊3C32
64 conjugacy classes
class | 1 | 2 | 4A | 4B | 5A | 5B | 8A | 8B | 8C | 8D | 10A | 10B | 16A | ··· | 16H | 20A | 20B | 20C | 20D | 32A | ··· | 32P | 40A | ··· | 40H | 80A | ··· | 80P |
order | 1 | 2 | 4 | 4 | 5 | 5 | 8 | 8 | 8 | 8 | 10 | 10 | 16 | ··· | 16 | 20 | 20 | 20 | 20 | 32 | ··· | 32 | 40 | ··· | 40 | 80 | ··· | 80 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 5 | ··· | 5 | 2 | ··· | 2 | 2 | ··· | 2 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | - | |||||||
image | C1 | C2 | C4 | C8 | C16 | C32 | D5 | Dic5 | C5⋊2C8 | C5⋊2C16 | C5⋊2C32 |
kernel | C5⋊2C32 | C80 | C40 | C20 | C10 | C5 | C16 | C8 | C4 | C2 | C1 |
# reps | 1 | 1 | 2 | 4 | 8 | 16 | 2 | 2 | 4 | 8 | 16 |
Matrix representation of C5⋊2C32 ►in GL2(𝔽641) generated by
640 | 1 |
361 | 279 |
500 | 94 |
301 | 141 |
G:=sub<GL(2,GF(641))| [640,361,1,279],[500,301,94,141] >;
C5⋊2C32 in GAP, Magma, Sage, TeX
C_5\rtimes_2C_{32}
% in TeX
G:=Group("C5:2C32");
// GroupNames label
G:=SmallGroup(160,1);
// by ID
G=gap.SmallGroup(160,1);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,12,31,50,69,4613]);
// Polycyclic
G:=Group<a,b|a^5=b^32=1,b*a*b^-1=a^-1>;
// generators/relations
Export