Direct product G=NxQ with N=C40 and Q=C4
Semidirect products G=N:Q with N=C40 and Q=C4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C40:1C4 = D5.D8 | φ: C4/C1 → C4 ⊆ Aut C40 | 40 | 4 | C40:1C4 | 160,69 |
C40:2C4 = C40:C4 | φ: C4/C1 → C4 ⊆ Aut C40 | 40 | 4 | C40:2C4 | 160,68 |
C40:3C4 = C8xF5 | φ: C4/C1 → C4 ⊆ Aut C40 | 40 | 4 | C40:3C4 | 160,66 |
C40:4C4 = C8:F5 | φ: C4/C1 → C4 ⊆ Aut C40 | 40 | 4 | C40:4C4 | 160,67 |
C40:5C4 = C40:5C4 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:5C4 | 160,25 |
C40:6C4 = C40:6C4 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:6C4 | 160,24 |
C40:7C4 = C8xDic5 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:7C4 | 160,20 |
C40:8C4 = C40:8C4 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:8C4 | 160,22 |
C40:9C4 = C5xC2.D8 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:9C4 | 160,57 |
C40:10C4 = C5xC4.Q8 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:10C4 | 160,56 |
C40:11C4 = C5xC8:C4 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40:11C4 | 160,47 |
Non-split extensions G=N.Q with N=C40 and Q=C4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C40.1C4 = D10.Q8 | φ: C4/C1 → C4 ⊆ Aut C40 | 80 | 4 | C40.1C4 | 160,71 |
C40.2C4 = C40.C4 | φ: C4/C1 → C4 ⊆ Aut C40 | 80 | 4 | C40.2C4 | 160,70 |
C40.3C4 = C5:C32 | φ: C4/C1 → C4 ⊆ Aut C40 | 160 | 4 | C40.3C4 | 160,3 |
C40.4C4 = D5:C16 | φ: C4/C1 → C4 ⊆ Aut C40 | 80 | 4 | C40.4C4 | 160,64 |
C40.5C4 = C8.F5 | φ: C4/C1 → C4 ⊆ Aut C40 | 80 | 4 | C40.5C4 | 160,65 |
C40.6C4 = C40.6C4 | φ: C4/C2 → C2 ⊆ Aut C40 | 80 | 2 | C40.6C4 | 160,26 |
C40.7C4 = C5:2C32 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | 2 | C40.7C4 | 160,1 |
C40.8C4 = C2xC5:2C16 | φ: C4/C2 → C2 ⊆ Aut C40 | 160 | | C40.8C4 | 160,18 |
C40.9C4 = C20.4C8 | φ: C4/C2 → C2 ⊆ Aut C40 | 80 | 2 | C40.9C4 | 160,19 |
C40.10C4 = C5xC8.C4 | φ: C4/C2 → C2 ⊆ Aut C40 | 80 | 2 | C40.10C4 | 160,58 |
C40.11C4 = C5xM5(2) | φ: C4/C2 → C2 ⊆ Aut C40 | 80 | 2 | C40.11C4 | 160,60 |
x
:
Z
F
o
wr
Q
<