Copied to
clipboard

G = C5⋊C32order 160 = 25·5

The semidirect product of C5 and C32 acting via C32/C8=C4

metacyclic, supersoluble, monomial, Z-group, 2-hyperelementary

Aliases: C5⋊C32, C10.C16, C8.4F5, C20.2C8, C40.3C4, C2.(C5⋊C16), C4.2(C5⋊C8), C52C16.2C2, SmallGroup(160,3)

Series: Derived Chief Lower central Upper central

C1C5 — C5⋊C32
C1C5C10C20C40C52C16 — C5⋊C32
C5 — C5⋊C32
C1C8

Generators and relations for C5⋊C32
 G = < a,b | a5=b32=1, bab-1=a3 >

5C16
5C32

Smallest permutation representation of C5⋊C32
Regular action on 160 points
Generators in S160
(1 104 59 75 129)(2 76 105 130 60)(3 131 77 61 106)(4 62 132 107 78)(5 108 63 79 133)(6 80 109 134 64)(7 135 81 33 110)(8 34 136 111 82)(9 112 35 83 137)(10 84 113 138 36)(11 139 85 37 114)(12 38 140 115 86)(13 116 39 87 141)(14 88 117 142 40)(15 143 89 41 118)(16 42 144 119 90)(17 120 43 91 145)(18 92 121 146 44)(19 147 93 45 122)(20 46 148 123 94)(21 124 47 95 149)(22 96 125 150 48)(23 151 65 49 126)(24 50 152 127 66)(25 128 51 67 153)(26 68 97 154 52)(27 155 69 53 98)(28 54 156 99 70)(29 100 55 71 157)(30 72 101 158 56)(31 159 73 57 102)(32 58 160 103 74)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)

G:=sub<Sym(160)| (1,104,59,75,129)(2,76,105,130,60)(3,131,77,61,106)(4,62,132,107,78)(5,108,63,79,133)(6,80,109,134,64)(7,135,81,33,110)(8,34,136,111,82)(9,112,35,83,137)(10,84,113,138,36)(11,139,85,37,114)(12,38,140,115,86)(13,116,39,87,141)(14,88,117,142,40)(15,143,89,41,118)(16,42,144,119,90)(17,120,43,91,145)(18,92,121,146,44)(19,147,93,45,122)(20,46,148,123,94)(21,124,47,95,149)(22,96,125,150,48)(23,151,65,49,126)(24,50,152,127,66)(25,128,51,67,153)(26,68,97,154,52)(27,155,69,53,98)(28,54,156,99,70)(29,100,55,71,157)(30,72,101,158,56)(31,159,73,57,102)(32,58,160,103,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)>;

G:=Group( (1,104,59,75,129)(2,76,105,130,60)(3,131,77,61,106)(4,62,132,107,78)(5,108,63,79,133)(6,80,109,134,64)(7,135,81,33,110)(8,34,136,111,82)(9,112,35,83,137)(10,84,113,138,36)(11,139,85,37,114)(12,38,140,115,86)(13,116,39,87,141)(14,88,117,142,40)(15,143,89,41,118)(16,42,144,119,90)(17,120,43,91,145)(18,92,121,146,44)(19,147,93,45,122)(20,46,148,123,94)(21,124,47,95,149)(22,96,125,150,48)(23,151,65,49,126)(24,50,152,127,66)(25,128,51,67,153)(26,68,97,154,52)(27,155,69,53,98)(28,54,156,99,70)(29,100,55,71,157)(30,72,101,158,56)(31,159,73,57,102)(32,58,160,103,74), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160) );

G=PermutationGroup([[(1,104,59,75,129),(2,76,105,130,60),(3,131,77,61,106),(4,62,132,107,78),(5,108,63,79,133),(6,80,109,134,64),(7,135,81,33,110),(8,34,136,111,82),(9,112,35,83,137),(10,84,113,138,36),(11,139,85,37,114),(12,38,140,115,86),(13,116,39,87,141),(14,88,117,142,40),(15,143,89,41,118),(16,42,144,119,90),(17,120,43,91,145),(18,92,121,146,44),(19,147,93,45,122),(20,46,148,123,94),(21,124,47,95,149),(22,96,125,150,48),(23,151,65,49,126),(24,50,152,127,66),(25,128,51,67,153),(26,68,97,154,52),(27,155,69,53,98),(28,54,156,99,70),(29,100,55,71,157),(30,72,101,158,56),(31,159,73,57,102),(32,58,160,103,74)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)]])

C5⋊C32 is a maximal subgroup of   D5⋊C32  C80.C4  C5⋊M6(2)  C15⋊C32
C5⋊C32 is a maximal quotient of   C5⋊C64  C15⋊C32

40 conjugacy classes

class 1  2 4A4B 5 8A8B8C8D 10 16A···16H20A20B32A···32P40A40B40C40D
order1244588881016···16202032···3240404040
size11114111145···5445···54444

40 irreducible representations

dim1111114444
type+++-
imageC1C2C4C8C16C32F5C5⋊C8C5⋊C16C5⋊C32
kernelC5⋊C32C52C16C40C20C10C5C8C4C2C1
# reps11248161124

Matrix representation of C5⋊C32 in GL4(𝔽641) generated by

0100
0010
0001
640640640640
,
4683351954
325360306133
587414281606
508192227173
G:=sub<GL(4,GF(641))| [0,0,0,640,1,0,0,640,0,1,0,640,0,0,1,640],[468,325,587,508,335,360,414,192,19,306,281,227,54,133,606,173] >;

C5⋊C32 in GAP, Magma, Sage, TeX

C_5\rtimes C_{32}
% in TeX

G:=Group("C5:C32");
// GroupNames label

G:=SmallGroup(160,3);
// by ID

G=gap.SmallGroup(160,3);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,12,31,50,69,2309,2315]);
// Polycyclic

G:=Group<a,b|a^5=b^32=1,b*a*b^-1=a^3>;
// generators/relations

Export

Subgroup lattice of C5⋊C32 in TeX

׿
×
𝔽