Extensions 1→N→G→Q→1 with N=C4 and Q=D20

Direct product G=N×Q with N=C4 and Q=D20
dρLabelID
C4×D2080C4xD20160,94

Semidirect products G=N:Q with N=C4 and Q=D20
extensionφ:Q→Aut NdρLabelID
C41D20 = C204D4φ: D20/C20C2 ⊆ Aut C480C4:1D20160,95
C42D20 = C4⋊D20φ: D20/D10C2 ⊆ Aut C480C4:2D20160,116

Non-split extensions G=N.Q with N=C4 and Q=D20
extensionφ:Q→Aut NdρLabelID
C4.1D20 = D80φ: D20/C20C2 ⊆ Aut C4802+C4.1D20160,6
C4.2D20 = C16⋊D5φ: D20/C20C2 ⊆ Aut C4802C4.2D20160,7
C4.3D20 = Dic40φ: D20/C20C2 ⊆ Aut C41602-C4.3D20160,8
C4.4D20 = C202Q8φ: D20/C20C2 ⊆ Aut C4160C4.4D20160,90
C4.5D20 = C4.D20φ: D20/C20C2 ⊆ Aut C480C4.5D20160,96
C4.6D20 = C2×C40⋊C2φ: D20/C20C2 ⊆ Aut C480C4.6D20160,123
C4.7D20 = C2×D40φ: D20/C20C2 ⊆ Aut C480C4.7D20160,124
C4.8D20 = C2×Dic20φ: D20/C20C2 ⊆ Aut C4160C4.8D20160,126
C4.9D20 = D206C4φ: D20/D10C2 ⊆ Aut C480C4.9D20160,16
C4.10D20 = C10.Q16φ: D20/D10C2 ⊆ Aut C4160C4.10D20160,17
C4.11D20 = C20.46D4φ: D20/D10C2 ⊆ Aut C4404+C4.11D20160,30
C4.12D20 = C4.12D20φ: D20/D10C2 ⊆ Aut C4804-C4.12D20160,31
C4.13D20 = D102Q8φ: D20/D10C2 ⊆ Aut C480C4.13D20160,118
C4.14D20 = C8⋊D10φ: D20/D10C2 ⊆ Aut C4404+C4.14D20160,129
C4.15D20 = C8.D10φ: D20/D10C2 ⊆ Aut C4804-C4.15D20160,130
C4.16D20 = C203C8central extension (φ=1)160C4.16D20160,11
C4.17D20 = D204C4central extension (φ=1)402C4.17D20160,12
C4.18D20 = C40.6C4central extension (φ=1)802C4.18D20160,26
C4.19D20 = D101C8central extension (φ=1)80C4.19D20160,27
C4.20D20 = D407C2central extension (φ=1)802C4.20D20160,125

׿
×
𝔽