metacyclic, supersoluble, monomial, Z-group, 3-hyperelementary
Aliases: C19⋊C9, C19⋊C3.C3, SmallGroup(171,3)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C19 — C19⋊C3 — C19⋊C9 |
C19 — C19⋊C9 |
Generators and relations for C19⋊C9
G = < a,b | a19=b9=1, bab-1=a5 >
Character table of C19⋊C9
class | 1 | 3A | 3B | 9A | 9B | 9C | 9D | 9E | 9F | 19A | 19B | |
size | 1 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 9 | 9 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | ζ32 | 1 | 1 | linear of order 3 |
ρ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | ζ3 | 1 | 1 | linear of order 3 |
ρ4 | 1 | ζ32 | ζ3 | ζ94 | ζ92 | ζ98 | ζ9 | ζ97 | ζ95 | 1 | 1 | linear of order 9 |
ρ5 | 1 | ζ3 | ζ32 | ζ92 | ζ9 | ζ94 | ζ95 | ζ98 | ζ97 | 1 | 1 | linear of order 9 |
ρ6 | 1 | ζ32 | ζ3 | ζ9 | ζ95 | ζ92 | ζ97 | ζ94 | ζ98 | 1 | 1 | linear of order 9 |
ρ7 | 1 | ζ32 | ζ3 | ζ97 | ζ98 | ζ95 | ζ94 | ζ9 | ζ92 | 1 | 1 | linear of order 9 |
ρ8 | 1 | ζ3 | ζ32 | ζ95 | ζ97 | ζ9 | ζ98 | ζ92 | ζ94 | 1 | 1 | linear of order 9 |
ρ9 | 1 | ζ3 | ζ32 | ζ98 | ζ94 | ζ97 | ζ92 | ζ95 | ζ9 | 1 | 1 | linear of order 9 |
ρ10 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1+√-19/2 | -1-√-19/2 | complex faithful |
ρ11 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1-√-19/2 | -1+√-19/2 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
(2 5 17 8 10 18 12 7 6)(3 9 14 15 19 16 4 13 11)
G:=sub<Sym(19)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,5,17,8,10,18,12,7,6)(3,9,14,15,19,16,4,13,11)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19), (2,5,17,8,10,18,12,7,6)(3,9,14,15,19,16,4,13,11) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19)], [(2,5,17,8,10,18,12,7,6),(3,9,14,15,19,16,4,13,11)]])
G:=TransitiveGroup(19,5);
C19⋊C9 is a maximal subgroup of
F19
Matrix representation of C19⋊C9 ►in GL9(𝔽2053)
2052 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2052 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
2052 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
2052 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
2052 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
2052 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
2052 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
2052 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
858 | 1197 | 1191 | 1716 | 5 | 335 | 855 | 861 | 1195 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
859 | 1197 | 1191 | 1716 | 5 | 335 | 855 | 861 | 1195 |
337 | 852 | 526 | 1536 | 329 | 521 | 7 | 334 | 857 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
4 | 333 | 1713 | 864 | 1532 | 2048 | 1719 | 1197 | 2051 |
2050 | 1719 | 1198 | 1190 | 1715 | 4 | 335 | 857 | 2 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(9,GF(2053))| [2052,2052,2052,2052,2052,2052,2052,2052,858,1,0,0,0,0,0,0,0,1197,0,1,0,0,0,0,0,0,1191,0,0,1,0,0,0,0,0,1716,0,0,0,1,0,0,0,0,5,0,0,0,0,1,0,0,0,335,0,0,0,0,0,1,0,0,855,0,0,0,0,0,0,1,0,861,0,0,0,0,0,0,0,1,1195],[0,859,337,1,0,4,2050,0,0,0,1197,852,0,0,333,1719,1,0,0,1191,526,0,0,1713,1198,0,0,0,1716,1536,0,0,864,1190,0,0,1,5,329,0,0,1532,1715,0,0,0,335,521,0,1,2048,4,0,0,0,855,7,0,0,1719,335,0,1,0,861,334,0,0,1197,857,0,0,0,1195,857,0,0,2051,2,0,0] >;
C19⋊C9 in GAP, Magma, Sage, TeX
C_{19}\rtimes C_9
% in TeX
G:=Group("C19:C9");
// GroupNames label
G:=SmallGroup(171,3);
// by ID
G=gap.SmallGroup(171,3);
# by ID
G:=PCGroup([3,-3,-3,-19,9,326,194]);
// Polycyclic
G:=Group<a,b|a^19=b^9=1,b*a*b^-1=a^5>;
// generators/relations
Export
Subgroup lattice of C19⋊C9 in TeX
Character table of C19⋊C9 in TeX