Copied to
clipboard

G = C63⋊C3order 189 = 33·7

2nd semidirect product of C63 and C3 acting faithfully

metacyclic, supersoluble, monomial, 3-hyperelementary

Aliases: C632C3, C21.2C32, C713- 1+2, C7⋊C91C3, C91(C7⋊C3), C3.3(C3×C7⋊C3), (C3×C7⋊C3).1C3, SmallGroup(189,4)

Series: Derived Chief Lower central Upper central

C1C21 — C63⋊C3
C1C7C21C3×C7⋊C3 — C63⋊C3
C7C21 — C63⋊C3
C1C3C9

Generators and relations for C63⋊C3
 G = < a,b | a63=b3=1, bab-1=a25 >

21C3
7C32
7C9
7C9
3C7⋊C3
73- 1+2

Character table of C63⋊C3

 class 13A3B3C3D7A7B9A9B9C9D9E9F21A21B21C21D63A63B63C63D63E63F63G63H63I63J63K63L
 size 11121213333212121213333333333333333
ρ111111111111111111111111111111    trivial
ρ2111ζ32ζ311ζ3ζ32ζ3ζ32111111ζ3ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ32ζ3ζ3ζ3    linear of order 3
ρ31111111ζ3ζ32ζ32ζ3ζ3ζ321111ζ3ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ32ζ3ζ3ζ3    linear of order 3
ρ4111ζ3ζ3211ζ3ζ3211ζ32ζ31111ζ3ζ32ζ32ζ32ζ32ζ32ζ3ζ3ζ32ζ3ζ3ζ3    linear of order 3
ρ51111111ζ32ζ3ζ3ζ32ζ32ζ31111ζ32ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ3ζ32ζ32ζ32    linear of order 3
ρ6111ζ32ζ31111ζ32ζ3ζ32ζ31111111111111111    linear of order 3
ρ7111ζ3ζ321111ζ3ζ32ζ3ζ321111111111111111    linear of order 3
ρ8111ζ3ζ3211ζ32ζ3ζ32ζ3111111ζ32ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ3ζ32ζ32ζ32    linear of order 3
ρ9111ζ32ζ311ζ32ζ311ζ3ζ321111ζ32ζ3ζ3ζ3ζ3ζ3ζ32ζ32ζ3ζ32ζ32ζ32    linear of order 3
ρ103-3+3-3/2-3-3-3/20033000000-3-3-3/2-3-3-3/2-3+3-3/2-3+3-3/2000000000000    complex lifted from 3- 1+2
ρ113-3-3-3/2-3+3-3/20033000000-3+3-3/2-3+3-3/2-3-3-3/2-3-3-3/2000000000000    complex lifted from 3- 1+2
ρ1233300-1--7/2-1+-7/2330000-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ1333300-1+-7/2-1--7/2330000-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ1433300-1+-7/2-1--7/2-3+3-3/2-3-3-3/20000-1--7/2-1+-7/2-1+-7/2-1--7/2ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73    complex lifted from C3×C7⋊C3
ρ1533300-1--7/2-1+-7/2-3-3-3/2-3+3-3/20000-1+-7/2-1--7/2-1--7/2-1+-7/2ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7    complex lifted from C3×C7⋊C3
ρ1633300-1--7/2-1+-7/2-3+3-3/2-3-3-3/20000-1+-7/2-1--7/2-1--7/2-1+-7/2ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7    complex lifted from C3×C7⋊C3
ρ1733300-1+-7/2-1--7/2-3-3-3/2-3+3-3/20000-1--7/2-1+-7/2-1+-7/2-1--7/2ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73    complex lifted from C3×C7⋊C3
ρ183-3+3-3/2-3-3-3/200-1+-7/2-1--7/2000000ζ96ζ7696ζ7596ζ73ζ96ζ7496ζ7296ζ7ζ93ζ7493ζ7293ζ7ζ93ζ7693ζ7593ζ73ζ95ζ7495ζ7292ζ7292ζ797ζ7297ζ794ζ7494ζ72ζ94ζ7694ζ759ζ759ζ7394ζ7294ζ79ζ749ζ72ζ97ζ7697ζ739ζ759ζ7397ζ7697ζ7394ζ7694ζ75ζ95ζ7695ζ7392ζ7592ζ7395ζ7695ζ7592ζ7692ζ7394ζ7494ζ729ζ749ζ7ζ98ζ7498ζ792ζ7292ζ798ζ7498ζ795ζ7495ζ72ζ98ζ7598ζ7392ζ7692ζ73    complex faithful
ρ193-3-3-3/2-3+3-3/200-1+-7/2-1--7/2000000ζ93ζ7693ζ7593ζ73ζ93ζ7493ζ7293ζ7ζ96ζ7496ζ7296ζ7ζ96ζ7696ζ7596ζ7394ζ7294ζ79ζ749ζ72ζ98ζ7498ζ792ζ7292ζ795ζ7695ζ7592ζ7692ζ7398ζ7498ζ795ζ7495ζ72ζ95ζ7695ζ7392ζ7592ζ73ζ98ζ7598ζ7392ζ7692ζ7397ζ7697ζ7394ζ7694ζ75ζ97ζ7697ζ739ζ759ζ73ζ95ζ7495ζ7292ζ7292ζ794ζ7494ζ729ζ749ζ797ζ7297ζ794ζ7494ζ72ζ94ζ7694ζ759ζ759ζ73    complex faithful
ρ203-3-3-3/2-3+3-3/200-1--7/2-1+-7/2000000ζ93ζ7493ζ7293ζ7ζ93ζ7693ζ7593ζ73ζ96ζ7696ζ7596ζ73ζ96ζ7496ζ7296ζ7ζ94ζ7694ζ759ζ759ζ73ζ95ζ7695ζ7392ζ7592ζ7398ζ7498ζ795ζ7495ζ7295ζ7695ζ7592ζ7692ζ73ζ98ζ7498ζ792ζ7292ζ7ζ95ζ7495ζ7292ζ7292ζ794ζ7494ζ729ζ749ζ797ζ7297ζ794ζ7494ζ72ζ98ζ7598ζ7392ζ7692ζ7397ζ7697ζ7394ζ7694ζ75ζ97ζ7697ζ739ζ759ζ7394ζ7294ζ79ζ749ζ72    complex faithful
ρ213-3+3-3/2-3-3-3/200-1--7/2-1+-7/2000000ζ96ζ7496ζ7296ζ7ζ96ζ7696ζ7596ζ73ζ93ζ7693ζ7593ζ73ζ93ζ7493ζ7293ζ795ζ7695ζ7592ζ7692ζ7397ζ7697ζ7394ζ7694ζ7597ζ7297ζ794ζ7494ζ72ζ97ζ7697ζ739ζ759ζ7394ζ7494ζ729ζ749ζ794ζ7294ζ79ζ749ζ72ζ95ζ7495ζ7292ζ7292ζ7ζ98ζ7498ζ792ζ7292ζ7ζ94ζ7694ζ759ζ759ζ73ζ98ζ7598ζ7392ζ7692ζ73ζ95ζ7695ζ7392ζ7592ζ7398ζ7498ζ795ζ7495ζ72    complex faithful
ρ223-3-3-3/2-3+3-3/200-1+-7/2-1--7/2000000ζ93ζ7693ζ7593ζ73ζ93ζ7493ζ7293ζ7ζ96ζ7496ζ7296ζ7ζ96ζ7696ζ7596ζ7394ζ7494ζ729ζ749ζ798ζ7498ζ795ζ7495ζ72ζ98ζ7598ζ7392ζ7692ζ73ζ95ζ7495ζ7292ζ7292ζ795ζ7695ζ7592ζ7692ζ73ζ95ζ7695ζ7392ζ7592ζ73ζ97ζ7697ζ739ζ759ζ73ζ94ζ7694ζ759ζ759ζ73ζ98ζ7498ζ792ζ7292ζ797ζ7297ζ794ζ7494ζ7294ζ7294ζ79ζ749ζ7297ζ7697ζ7394ζ7694ζ75    complex faithful
ρ233-3-3-3/2-3+3-3/200-1--7/2-1+-7/2000000ζ93ζ7493ζ7293ζ7ζ93ζ7693ζ7593ζ73ζ96ζ7696ζ7596ζ73ζ96ζ7496ζ7296ζ7ζ97ζ7697ζ739ζ759ζ73ζ98ζ7598ζ7392ζ7692ζ73ζ98ζ7498ζ792ζ7292ζ7ζ95ζ7695ζ7392ζ7592ζ73ζ95ζ7495ζ7292ζ7292ζ798ζ7498ζ795ζ7495ζ7294ζ7294ζ79ζ749ζ7294ζ7494ζ729ζ749ζ795ζ7695ζ7592ζ7692ζ73ζ94ζ7694ζ759ζ759ζ7397ζ7697ζ7394ζ7694ζ7597ζ7297ζ794ζ7494ζ72    complex faithful
ρ243-3-3-3/2-3+3-3/200-1--7/2-1+-7/2000000ζ93ζ7493ζ7293ζ7ζ93ζ7693ζ7593ζ73ζ96ζ7696ζ7596ζ73ζ96ζ7496ζ7296ζ797ζ7697ζ7394ζ7694ζ7595ζ7695ζ7592ζ7692ζ73ζ95ζ7495ζ7292ζ7292ζ7ζ98ζ7598ζ7392ζ7692ζ7398ζ7498ζ795ζ7495ζ72ζ98ζ7498ζ792ζ7292ζ797ζ7297ζ794ζ7494ζ7294ζ7294ζ79ζ749ζ72ζ95ζ7695ζ7392ζ7592ζ73ζ97ζ7697ζ739ζ759ζ73ζ94ζ7694ζ759ζ759ζ7394ζ7494ζ729ζ749ζ7    complex faithful
ρ253-3+3-3/2-3-3-3/200-1+-7/2-1--7/2000000ζ96ζ7696ζ7596ζ73ζ96ζ7496ζ7296ζ7ζ93ζ7493ζ7293ζ7ζ93ζ7693ζ7593ζ73ζ98ζ7498ζ792ζ7292ζ794ζ7294ζ79ζ749ζ7297ζ7697ζ7394ζ7694ζ7594ζ7494ζ729ζ749ζ7ζ94ζ7694ζ759ζ759ζ73ζ97ζ7697ζ739ζ759ζ7395ζ7695ζ7592ζ7692ζ73ζ98ζ7598ζ7392ζ7692ζ7397ζ7297ζ794ζ7494ζ7298ζ7498ζ795ζ7495ζ72ζ95ζ7495ζ7292ζ7292ζ7ζ95ζ7695ζ7392ζ7592ζ73    complex faithful
ρ263-3-3-3/2-3+3-3/200-1+-7/2-1--7/2000000ζ93ζ7693ζ7593ζ73ζ93ζ7493ζ7293ζ7ζ96ζ7496ζ7296ζ7ζ96ζ7696ζ7596ζ7397ζ7297ζ794ζ7494ζ72ζ95ζ7495ζ7292ζ7292ζ7ζ95ζ7695ζ7392ζ7592ζ73ζ98ζ7498ζ792ζ7292ζ7ζ98ζ7598ζ7392ζ7692ζ7395ζ7695ζ7592ζ7692ζ73ζ94ζ7694ζ759ζ759ζ7397ζ7697ζ7394ζ7694ζ7598ζ7498ζ795ζ7495ζ7294ζ7294ζ79ζ749ζ7294ζ7494ζ729ζ749ζ7ζ97ζ7697ζ739ζ759ζ73    complex faithful
ρ273-3+3-3/2-3-3-3/200-1--7/2-1+-7/2000000ζ96ζ7496ζ7296ζ7ζ96ζ7696ζ7596ζ73ζ93ζ7693ζ7593ζ73ζ93ζ7493ζ7293ζ7ζ95ζ7695ζ7392ζ7592ζ73ζ94ζ7694ζ759ζ759ζ7394ζ7494ζ729ζ749ζ797ζ7697ζ7394ζ7694ζ7594ζ7294ζ79ζ749ζ7297ζ7297ζ794ζ7494ζ7298ζ7498ζ795ζ7495ζ72ζ95ζ7495ζ7292ζ7292ζ7ζ97ζ7697ζ739ζ759ζ7395ζ7695ζ7592ζ7692ζ73ζ98ζ7598ζ7392ζ7692ζ73ζ98ζ7498ζ792ζ7292ζ7    complex faithful
ρ283-3+3-3/2-3-3-3/200-1+-7/2-1--7/2000000ζ96ζ7696ζ7596ζ73ζ96ζ7496ζ7296ζ7ζ93ζ7493ζ7293ζ7ζ93ζ7693ζ7593ζ7398ζ7498ζ795ζ7495ζ7294ζ7494ζ729ζ749ζ7ζ97ζ7697ζ739ζ759ζ7397ζ7297ζ794ζ7494ζ7297ζ7697ζ7394ζ7694ζ75ζ94ζ7694ζ759ζ759ζ73ζ98ζ7598ζ7392ζ7692ζ73ζ95ζ7695ζ7392ζ7592ζ7394ζ7294ζ79ζ749ζ72ζ95ζ7495ζ7292ζ7292ζ7ζ98ζ7498ζ792ζ7292ζ795ζ7695ζ7592ζ7692ζ73    complex faithful
ρ293-3+3-3/2-3-3-3/200-1--7/2-1+-7/2000000ζ96ζ7496ζ7296ζ7ζ96ζ7696ζ7596ζ73ζ93ζ7693ζ7593ζ73ζ93ζ7493ζ7293ζ7ζ98ζ7598ζ7392ζ7692ζ73ζ97ζ7697ζ739ζ759ζ7394ζ7294ζ79ζ749ζ72ζ94ζ7694ζ759ζ759ζ7397ζ7297ζ794ζ7494ζ7294ζ7494ζ729ζ749ζ7ζ98ζ7498ζ792ζ7292ζ798ζ7498ζ795ζ7495ζ7297ζ7697ζ7394ζ7694ζ75ζ95ζ7695ζ7392ζ7592ζ7395ζ7695ζ7592ζ7692ζ73ζ95ζ7495ζ7292ζ7292ζ7    complex faithful

Smallest permutation representation of C63⋊C3
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
(2 59 26)(3 54 51)(4 49 13)(5 44 38)(6 39 63)(7 34 25)(8 29 50)(9 24 12)(10 19 37)(11 14 62)(15 57 36)(16 52 61)(17 47 23)(18 42 48)(20 32 35)(21 27 60)(28 55 46)(30 45 33)(31 40 58)(41 53 56)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (2,59,26)(3,54,51)(4,49,13)(5,44,38)(6,39,63)(7,34,25)(8,29,50)(9,24,12)(10,19,37)(11,14,62)(15,57,36)(16,52,61)(17,47,23)(18,42,48)(20,32,35)(21,27,60)(28,55,46)(30,45,33)(31,40,58)(41,53,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (2,59,26)(3,54,51)(4,49,13)(5,44,38)(6,39,63)(7,34,25)(8,29,50)(9,24,12)(10,19,37)(11,14,62)(15,57,36)(16,52,61)(17,47,23)(18,42,48)(20,32,35)(21,27,60)(28,55,46)(30,45,33)(31,40,58)(41,53,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)], [(2,59,26),(3,54,51),(4,49,13),(5,44,38),(6,39,63),(7,34,25),(8,29,50),(9,24,12),(10,19,37),(11,14,62),(15,57,36),(16,52,61),(17,47,23),(18,42,48),(20,32,35),(21,27,60),(28,55,46),(30,45,33),(31,40,58),(41,53,56)]])

C63⋊C3 is a maximal subgroup of   C94F7  C636C6  C92F7

Matrix representation of C63⋊C3 in GL3(𝔽127) generated by

1269072
726685
8510716
,
10700
792020
01070
G:=sub<GL(3,GF(127))| [126,72,85,90,66,107,72,85,16],[107,79,0,0,20,107,0,20,0] >;

C63⋊C3 in GAP, Magma, Sage, TeX

C_{63}\rtimes C_3
% in TeX

G:=Group("C63:C3");
// GroupNames label

G:=SmallGroup(189,4);
// by ID

G=gap.SmallGroup(189,4);
# by ID

G:=PCGroup([4,-3,-3,-3,-7,97,29,867]);
// Polycyclic

G:=Group<a,b|a^63=b^3=1,b*a*b^-1=a^25>;
// generators/relations

Export

Subgroup lattice of C63⋊C3 in TeX
Character table of C63⋊C3 in TeX

׿
×
𝔽