Extensions 1→N→G→Q→1 with N=S3×C14 and Q=C2

Direct product G=N×Q with N=S3×C14 and Q=C2
dρLabelID
S3×C2×C1484S3xC2xC14168,55

Semidirect products G=N:Q with N=S3×C14 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C14)⋊1C2 = C21⋊D4φ: C2/C1C2 ⊆ Out S3×C14844-(S3xC14):1C2168,15
(S3×C14)⋊2C2 = C7⋊D12φ: C2/C1C2 ⊆ Out S3×C14844+(S3xC14):2C2168,17
(S3×C14)⋊3C2 = C2×S3×D7φ: C2/C1C2 ⊆ Out S3×C14424+(S3xC14):3C2168,50
(S3×C14)⋊4C2 = C7×D12φ: C2/C1C2 ⊆ Out S3×C14842(S3xC14):4C2168,31
(S3×C14)⋊5C2 = C7×C3⋊D4φ: C2/C1C2 ⊆ Out S3×C14842(S3xC14):5C2168,33

Non-split extensions G=N.Q with N=S3×C14 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3×C14).C2 = S3×Dic7φ: C2/C1C2 ⊆ Out S3×C14844-(S3xC14).C2168,13
(S3×C14).2C2 = S3×C28φ: trivial image842(S3xC14).2C2168,30

׿
×
𝔽