Extensions 1→N→G→Q→1 with N=S3xC14 and Q=C2

Direct product G=NxQ with N=S3xC14 and Q=C2
dρLabelID
S3xC2xC1484S3xC2xC14168,55

Semidirect products G=N:Q with N=S3xC14 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC14):1C2 = C21:D4φ: C2/C1C2 ⊆ Out S3xC14844-(S3xC14):1C2168,15
(S3xC14):2C2 = C7:D12φ: C2/C1C2 ⊆ Out S3xC14844+(S3xC14):2C2168,17
(S3xC14):3C2 = C2xS3xD7φ: C2/C1C2 ⊆ Out S3xC14424+(S3xC14):3C2168,50
(S3xC14):4C2 = C7xD12φ: C2/C1C2 ⊆ Out S3xC14842(S3xC14):4C2168,31
(S3xC14):5C2 = C7xC3:D4φ: C2/C1C2 ⊆ Out S3xC14842(S3xC14):5C2168,33

Non-split extensions G=N.Q with N=S3xC14 and Q=C2
extensionφ:Q→Out NdρLabelID
(S3xC14).C2 = S3xDic7φ: C2/C1C2 ⊆ Out S3xC14844-(S3xC14).C2168,13
(S3xC14).2C2 = S3xC28φ: trivial image842(S3xC14).2C2168,30

׿
x
:
Z
F
o
wr
Q
<