direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: S3×Dic7, D6.D7, C14.2D6, C6.2D14, Dic21⋊3C2, C42.2C22, (S3×C7)⋊C4, C7⋊3(C4×S3), C21⋊2(C2×C4), (S3×C14).C2, C2.2(S3×D7), C3⋊1(C2×Dic7), (C3×Dic7)⋊1C2, SmallGroup(168,13)
Series: Derived ►Chief ►Lower central ►Upper central
C21 — S3×Dic7 |
Generators and relations for S3×Dic7
G = < a,b,c,d | a3=b2=c14=1, d2=c7, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Character table of S3×Dic7
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 6 | 7A | 7B | 7C | 12A | 12B | 14A | 14B | 14C | 14D | 14E | 14F | 14G | 14H | 14I | 21A | 21B | 21C | 42A | 42B | 42C | |
size | 1 | 1 | 3 | 3 | 2 | 7 | 7 | 21 | 21 | 2 | 2 | 2 | 2 | 14 | 14 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | 1 | -1 | 1 | -i | i | i | -i | -1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ6 | 1 | -1 | 1 | -1 | 1 | i | -i | -i | i | -1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ7 | 1 | -1 | -1 | 1 | 1 | i | -i | i | -i | -1 | 1 | 1 | 1 | i | -i | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ8 | 1 | -1 | -1 | 1 | 1 | -i | i | -i | i | -1 | 1 | 1 | 1 | -i | i | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 4 |
ρ9 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -1 | -1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | -1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ12 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ13 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ15 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ17 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ76+ζ7 | ζ75+ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | symplectic lifted from Dic7, Schur index 2 |
ρ18 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ75+ζ72 | ζ74+ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | symplectic lifted from Dic7, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | symplectic lifted from Dic7, Schur index 2 |
ρ20 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | symplectic lifted from Dic7, Schur index 2 |
ρ21 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ74+ζ73 | ζ76+ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | symplectic lifted from Dic7, Schur index 2 |
ρ22 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | symplectic lifted from Dic7, Schur index 2 |
ρ23 | 2 | -2 | 0 | 0 | -1 | -2i | 2i | 0 | 0 | 1 | 2 | 2 | 2 | i | -i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | complex lifted from C4×S3 |
ρ24 | 2 | -2 | 0 | 0 | -1 | 2i | -2i | 0 | 0 | 1 | 2 | 2 | 2 | -i | i | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | complex lifted from C4×S3 |
ρ25 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | orthogonal lifted from S3×D7 |
ρ26 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | orthogonal lifted from S3×D7 |
ρ27 | 4 | 4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | orthogonal lifted from S3×D7 |
ρ28 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 0 | 0 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | symplectic faithful, Schur index 2 |
ρ29 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2ζ76+2ζ7 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 0 | 0 | -2ζ74-2ζ73 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | symplectic faithful, Schur index 2 |
ρ30 | 4 | -4 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 2ζ75+2ζ72 | 2ζ74+2ζ73 | 2ζ76+2ζ7 | 0 | 0 | -2ζ76-2ζ7 | -2ζ75-2ζ72 | -2ζ74-2ζ73 | 0 | 0 | 0 | 0 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | symplectic faithful, Schur index 2 |
(1 41 82)(2 42 83)(3 29 84)(4 30 71)(5 31 72)(6 32 73)(7 33 74)(8 34 75)(9 35 76)(10 36 77)(11 37 78)(12 38 79)(13 39 80)(14 40 81)(15 59 52)(16 60 53)(17 61 54)(18 62 55)(19 63 56)(20 64 43)(21 65 44)(22 66 45)(23 67 46)(24 68 47)(25 69 48)(26 70 49)(27 57 50)(28 58 51)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 66)(16 67)(17 68)(18 69)(19 70)(20 57)(21 58)(22 59)(23 60)(24 61)(25 62)(26 63)(27 64)(28 65)(29 77)(30 78)(31 79)(32 80)(33 81)(34 82)(35 83)(36 84)(37 71)(38 72)(39 73)(40 74)(41 75)(42 76)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 50 8 43)(2 49 9 56)(3 48 10 55)(4 47 11 54)(5 46 12 53)(6 45 13 52)(7 44 14 51)(15 32 22 39)(16 31 23 38)(17 30 24 37)(18 29 25 36)(19 42 26 35)(20 41 27 34)(21 40 28 33)(57 75 64 82)(58 74 65 81)(59 73 66 80)(60 72 67 79)(61 71 68 78)(62 84 69 77)(63 83 70 76)
G:=sub<Sym(84)| (1,41,82)(2,42,83)(3,29,84)(4,30,71)(5,31,72)(6,32,73)(7,33,74)(8,34,75)(9,35,76)(10,36,77)(11,37,78)(12,38,79)(13,39,80)(14,40,81)(15,59,52)(16,60,53)(17,61,54)(18,62,55)(19,63,56)(20,64,43)(21,65,44)(22,66,45)(23,67,46)(24,68,47)(25,69,48)(26,70,49)(27,57,50)(28,58,51), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,66)(16,67)(17,68)(18,69)(19,70)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,8,43)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,32,22,39)(16,31,23,38)(17,30,24,37)(18,29,25,36)(19,42,26,35)(20,41,27,34)(21,40,28,33)(57,75,64,82)(58,74,65,81)(59,73,66,80)(60,72,67,79)(61,71,68,78)(62,84,69,77)(63,83,70,76)>;
G:=Group( (1,41,82)(2,42,83)(3,29,84)(4,30,71)(5,31,72)(6,32,73)(7,33,74)(8,34,75)(9,35,76)(10,36,77)(11,37,78)(12,38,79)(13,39,80)(14,40,81)(15,59,52)(16,60,53)(17,61,54)(18,62,55)(19,63,56)(20,64,43)(21,65,44)(22,66,45)(23,67,46)(24,68,47)(25,69,48)(26,70,49)(27,57,50)(28,58,51), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,66)(16,67)(17,68)(18,69)(19,70)(20,57)(21,58)(22,59)(23,60)(24,61)(25,62)(26,63)(27,64)(28,65)(29,77)(30,78)(31,79)(32,80)(33,81)(34,82)(35,83)(36,84)(37,71)(38,72)(39,73)(40,74)(41,75)(42,76)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,50,8,43)(2,49,9,56)(3,48,10,55)(4,47,11,54)(5,46,12,53)(6,45,13,52)(7,44,14,51)(15,32,22,39)(16,31,23,38)(17,30,24,37)(18,29,25,36)(19,42,26,35)(20,41,27,34)(21,40,28,33)(57,75,64,82)(58,74,65,81)(59,73,66,80)(60,72,67,79)(61,71,68,78)(62,84,69,77)(63,83,70,76) );
G=PermutationGroup([[(1,41,82),(2,42,83),(3,29,84),(4,30,71),(5,31,72),(6,32,73),(7,33,74),(8,34,75),(9,35,76),(10,36,77),(11,37,78),(12,38,79),(13,39,80),(14,40,81),(15,59,52),(16,60,53),(17,61,54),(18,62,55),(19,63,56),(20,64,43),(21,65,44),(22,66,45),(23,67,46),(24,68,47),(25,69,48),(26,70,49),(27,57,50),(28,58,51)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,66),(16,67),(17,68),(18,69),(19,70),(20,57),(21,58),(22,59),(23,60),(24,61),(25,62),(26,63),(27,64),(28,65),(29,77),(30,78),(31,79),(32,80),(33,81),(34,82),(35,83),(36,84),(37,71),(38,72),(39,73),(40,74),(41,75),(42,76),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,50,8,43),(2,49,9,56),(3,48,10,55),(4,47,11,54),(5,46,12,53),(6,45,13,52),(7,44,14,51),(15,32,22,39),(16,31,23,38),(17,30,24,37),(18,29,25,36),(19,42,26,35),(20,41,27,34),(21,40,28,33),(57,75,64,82),(58,74,65,81),(59,73,66,80),(60,72,67,79),(61,71,68,78),(62,84,69,77),(63,83,70,76)]])
S3×Dic7 is a maximal subgroup of
D12⋊D7 D12⋊5D7 C4×S3×D7 C42.C23 Dic3.D14
S3×Dic7 is a maximal quotient of D6.Dic7 D6⋊Dic7 C14.Dic6
Matrix representation of S3×Dic7 ►in GL5(𝔽337)
1 | 0 | 0 | 0 | 0 |
0 | 336 | 336 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 336 | 336 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
336 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 109 | 1 |
0 | 0 | 0 | 335 | 34 |
148 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 310 | 263 |
0 | 0 | 0 | 192 | 27 |
G:=sub<GL(5,GF(337))| [1,0,0,0,0,0,336,1,0,0,0,336,0,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,336,0,0,0,0,336,0,0,0,0,0,1,0,0,0,0,0,1],[336,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,109,335,0,0,0,1,34],[148,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,310,192,0,0,0,263,27] >;
S3×Dic7 in GAP, Magma, Sage, TeX
S_3\times {\rm Dic}_7
% in TeX
G:=Group("S3xDic7");
// GroupNames label
G:=SmallGroup(168,13);
// by ID
G=gap.SmallGroup(168,13);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-7,20,168,3604]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^2=c^14=1,d^2=c^7,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of S3×Dic7 in TeX
Character table of S3×Dic7 in TeX