Copied to
clipboard

G = C4○D4⋊C12order 192 = 26·3

The semidirect product of C4○D4 and C12 acting via C12/C2=C6

non-abelian, soluble

Aliases: C4○D4⋊C12, C4⋊C4.1A4, C4.A45C4, C4.1(C4×A4), (C4×Q8).1C6, Q8.3(C2×C12), C2.2(D4.A4), C2.1(Q8.A4), C23.33C23⋊C3, SL2(𝔽3)⋊7(C2×C4), (C4×SL2(𝔽3))⋊4C2, C22.16(C22×A4), (C2×SL2(𝔽3)).26C22, C2.8(C2×C4×A4), (C2×C4).3(C2×A4), (C2×C4.A4).7C2, (C2×C4○D4).1C6, (C2×Q8).37(C2×C6), SmallGroup(192,999)

Series: Derived Chief Lower central Upper central

C1C2Q8 — C4○D4⋊C12
C1C2Q8C2×Q8C2×SL2(𝔽3)C2×C4.A4 — C4○D4⋊C12
Q8 — C4○D4⋊C12
C1C22C4⋊C4

Generators and relations for C4○D4⋊C12
 G = < a,b,c,d | a4=c2=d12=1, b2=a2, dcd-1=ab=ba, ac=ca, dad-1=a-1, cbc=a2b, dbd-1=a-1bc >

Subgroups: 253 in 84 conjugacy classes, 27 normal (15 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, C2×C4, C2×C4, D4, Q8, Q8, C23, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, SL2(𝔽3), C2×C12, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C2×C4○D4, C3×C4⋊C4, C2×SL2(𝔽3), C4.A4, C23.33C23, C4×SL2(𝔽3), C2×C4.A4, C4○D4⋊C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C12, A4, C2×C6, C2×C12, C2×A4, C4×A4, C22×A4, C2×C4×A4, Q8.A4, D4.A4, C4○D4⋊C12

Smallest permutation representation of C4○D4⋊C12
On 64 points
Generators in S64
(1 15 10 6)(2 7 11 16)(3 13 12 8)(4 5 9 14)(17 62 34 42)(18 43 35 63)(19 64 36 44)(20 45 37 53)(21 54 38 46)(22 47 39 55)(23 56 40 48)(24 49 29 57)(25 58 30 50)(26 51 31 59)(27 60 32 52)(28 41 33 61)
(1 39 10 22)(2 36 11 19)(3 33 12 28)(4 30 9 25)(5 50 14 58)(6 47 15 55)(7 44 16 64)(8 41 13 61)(17 21 34 38)(18 31 35 26)(20 24 37 29)(23 27 40 32)(42 46 62 54)(43 59 63 51)(45 49 53 57)(48 52 56 60)
(1 51)(2 56)(3 45)(4 62)(5 34)(6 26)(7 40)(8 20)(9 42)(10 59)(11 48)(12 53)(13 37)(14 17)(15 31)(16 23)(18 55)(19 60)(21 50)(22 43)(24 61)(25 54)(27 44)(28 49)(29 41)(30 46)(32 64)(33 57)(35 47)(36 52)(38 58)(39 63)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52)(53 54 55 56 57 58 59 60 61 62 63 64)

G:=sub<Sym(64)| (1,15,10,6)(2,7,11,16)(3,13,12,8)(4,5,9,14)(17,62,34,42)(18,43,35,63)(19,64,36,44)(20,45,37,53)(21,54,38,46)(22,47,39,55)(23,56,40,48)(24,49,29,57)(25,58,30,50)(26,51,31,59)(27,60,32,52)(28,41,33,61), (1,39,10,22)(2,36,11,19)(3,33,12,28)(4,30,9,25)(5,50,14,58)(6,47,15,55)(7,44,16,64)(8,41,13,61)(17,21,34,38)(18,31,35,26)(20,24,37,29)(23,27,40,32)(42,46,62,54)(43,59,63,51)(45,49,53,57)(48,52,56,60), (1,51)(2,56)(3,45)(4,62)(5,34)(6,26)(7,40)(8,20)(9,42)(10,59)(11,48)(12,53)(13,37)(14,17)(15,31)(16,23)(18,55)(19,60)(21,50)(22,43)(24,61)(25,54)(27,44)(28,49)(29,41)(30,46)(32,64)(33,57)(35,47)(36,52)(38,58)(39,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64)>;

G:=Group( (1,15,10,6)(2,7,11,16)(3,13,12,8)(4,5,9,14)(17,62,34,42)(18,43,35,63)(19,64,36,44)(20,45,37,53)(21,54,38,46)(22,47,39,55)(23,56,40,48)(24,49,29,57)(25,58,30,50)(26,51,31,59)(27,60,32,52)(28,41,33,61), (1,39,10,22)(2,36,11,19)(3,33,12,28)(4,30,9,25)(5,50,14,58)(6,47,15,55)(7,44,16,64)(8,41,13,61)(17,21,34,38)(18,31,35,26)(20,24,37,29)(23,27,40,32)(42,46,62,54)(43,59,63,51)(45,49,53,57)(48,52,56,60), (1,51)(2,56)(3,45)(4,62)(5,34)(6,26)(7,40)(8,20)(9,42)(10,59)(11,48)(12,53)(13,37)(14,17)(15,31)(16,23)(18,55)(19,60)(21,50)(22,43)(24,61)(25,54)(27,44)(28,49)(29,41)(30,46)(32,64)(33,57)(35,47)(36,52)(38,58)(39,63), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52)(53,54,55,56,57,58,59,60,61,62,63,64) );

G=PermutationGroup([[(1,15,10,6),(2,7,11,16),(3,13,12,8),(4,5,9,14),(17,62,34,42),(18,43,35,63),(19,64,36,44),(20,45,37,53),(21,54,38,46),(22,47,39,55),(23,56,40,48),(24,49,29,57),(25,58,30,50),(26,51,31,59),(27,60,32,52),(28,41,33,61)], [(1,39,10,22),(2,36,11,19),(3,33,12,28),(4,30,9,25),(5,50,14,58),(6,47,15,55),(7,44,16,64),(8,41,13,61),(17,21,34,38),(18,31,35,26),(20,24,37,29),(23,27,40,32),(42,46,62,54),(43,59,63,51),(45,49,53,57),(48,52,56,60)], [(1,51),(2,56),(3,45),(4,62),(5,34),(6,26),(7,40),(8,20),(9,42),(10,59),(11,48),(12,53),(13,37),(14,17),(15,31),(16,23),(18,55),(19,60),(21,50),(22,43),(24,61),(25,54),(27,44),(28,49),(29,41),(30,46),(32,64),(33,57),(35,47),(36,52),(38,58),(39,63)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52),(53,54,55,56,57,58,59,60,61,62,63,64)]])

38 conjugacy classes

class 1 2A2B2C2D2E3A3B4A···4F4G···4L6A···6F12A···12L
order122222334···44···46···612···12
size111166442···26···64···48···8

38 irreducible representations

dim111111113334444
type++++++-
imageC1C2C2C3C4C6C6C12A4C2×A4C4×A4Q8.A4Q8.A4D4.A4D4.A4
kernelC4○D4⋊C12C4×SL2(𝔽3)C2×C4.A4C23.33C23C4.A4C4×Q8C2×C4○D4C4○D4C4⋊C4C2×C4C4C2C2C2C2
# reps121244281341212

Matrix representation of C4○D4⋊C12 in GL7(𝔽13)

1000000
0100000
0010000
0005000
0000500
0000080
0000008
,
0100000
1000000
1212120000
00001200
0001000
00000012
0000010
,
1212120000
0010000
0100000
0006200
0002700
00000711
00000116
,
5000000
0050000
8880000
0000010
00000109
0001000
00010900

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,8],[0,1,12,0,0,0,0,1,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,12,0],[12,0,0,0,0,0,0,12,0,1,0,0,0,0,12,1,0,0,0,0,0,0,0,0,6,2,0,0,0,0,0,2,7,0,0,0,0,0,0,0,7,11,0,0,0,0,0,11,6],[5,0,8,0,0,0,0,0,0,8,0,0,0,0,0,5,8,0,0,0,0,0,0,0,0,0,1,10,0,0,0,0,0,0,9,0,0,0,1,10,0,0,0,0,0,0,9,0,0] >;

C4○D4⋊C12 in GAP, Magma, Sage, TeX

C_4\circ D_4\rtimes C_{12}
% in TeX

G:=Group("C4oD4:C12");
// GroupNames label

G:=SmallGroup(192,999);
// by ID

G=gap.SmallGroup(192,999);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,672,1373,92,438,172,775,285,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^2=d^12=1,b^2=a^2,d*c*d^-1=a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c=a^2*b,d*b*d^-1=a^-1*b*c>;
// generators/relations

׿
×
𝔽