Copied to
clipboard

G = A4×C4⋊C4order 192 = 26·3

Direct product of A4 and C4⋊C4

direct product, metabelian, soluble, monomial

Aliases: A4×C4⋊C4, C4⋊(C4×A4), (C4×A4)⋊3C4, (C22×C4)⋊C12, C2.2(D4×A4), C2.1(Q8×A4), (C2×A4).3Q8, (C2×A4).13D4, (C23×C4).1C6, C23.6(C3×Q8), C24.25(C2×C6), C23.22(C3×D4), C23.16(C2×C12), C22.12(C22×A4), (C22×A4).15C22, (C22×C4⋊C4)⋊C3, C22⋊(C3×C4⋊C4), C2.4(C2×C4×A4), (C2×C4×A4).7C2, (C2×C4).1(C2×A4), (C2×A4).12(C2×C4), SmallGroup(192,995)

Series: Derived Chief Lower central Upper central

C1C23 — A4×C4⋊C4
C1C22C23C24C22×A4C2×C4×A4 — A4×C4⋊C4
C22C23 — A4×C4⋊C4
C1C22C4⋊C4

Generators and relations for A4×C4⋊C4
 G = < a,b,c,d,e | a2=b2=c3=d4=e4=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 324 in 113 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, C2×C4, C2×C4, C23, C23, C12, A4, C2×C6, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2×C12, C2×A4, C2×C4⋊C4, C23×C4, C23×C4, C3×C4⋊C4, C4×A4, C4×A4, C22×A4, C22×C4⋊C4, C2×C4×A4, C2×C4×A4, A4×C4⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, A4, C2×C6, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2×A4, C3×C4⋊C4, C4×A4, C22×A4, C2×C4×A4, D4×A4, Q8×A4, A4×C4⋊C4

Smallest permutation representation of A4×C4⋊C4
On 48 points
Generators in S48
(5 7)(6 8)(13 15)(14 16)(17 19)(18 20)(25 27)(26 28)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)(29 31)(30 32)(37 39)(38 40)(45 47)(46 48)
(1 43 17)(2 44 18)(3 41 19)(4 42 20)(5 32 36)(6 29 33)(7 30 34)(8 31 35)(9 13 40)(10 14 37)(11 15 38)(12 16 39)(21 27 47)(22 28 48)(23 25 45)(24 26 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 12 31 21)(2 11 32 24)(3 10 29 23)(4 9 30 22)(5 46 18 38)(6 45 19 37)(7 48 20 40)(8 47 17 39)(13 34 28 42)(14 33 25 41)(15 36 26 44)(16 35 27 43)

G:=sub<Sym(48)| (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24)(29,31)(30,32)(37,39)(38,40)(45,47)(46,48), (1,43,17)(2,44,18)(3,41,19)(4,42,20)(5,32,36)(6,29,33)(7,30,34)(8,31,35)(9,13,40)(10,14,37)(11,15,38)(12,16,39)(21,27,47)(22,28,48)(23,25,45)(24,26,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,12,31,21)(2,11,32,24)(3,10,29,23)(4,9,30,22)(5,46,18,38)(6,45,19,37)(7,48,20,40)(8,47,17,39)(13,34,28,42)(14,33,25,41)(15,36,26,44)(16,35,27,43)>;

G:=Group( (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24)(29,31)(30,32)(37,39)(38,40)(45,47)(46,48), (1,43,17)(2,44,18)(3,41,19)(4,42,20)(5,32,36)(6,29,33)(7,30,34)(8,31,35)(9,13,40)(10,14,37)(11,15,38)(12,16,39)(21,27,47)(22,28,48)(23,25,45)(24,26,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,12,31,21)(2,11,32,24)(3,10,29,23)(4,9,30,22)(5,46,18,38)(6,45,19,37)(7,48,20,40)(8,47,17,39)(13,34,28,42)(14,33,25,41)(15,36,26,44)(16,35,27,43) );

G=PermutationGroup([[(5,7),(6,8),(13,15),(14,16),(17,19),(18,20),(25,27),(26,28),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24),(29,31),(30,32),(37,39),(38,40),(45,47),(46,48)], [(1,43,17),(2,44,18),(3,41,19),(4,42,20),(5,32,36),(6,29,33),(7,30,34),(8,31,35),(9,13,40),(10,14,37),(11,15,38),(12,16,39),(21,27,47),(22,28,48),(23,25,45),(24,26,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,12,31,21),(2,11,32,24),(3,10,29,23),(4,9,30,22),(5,46,18,38),(6,45,19,37),(7,48,20,40),(8,47,17,39),(13,34,28,42),(14,33,25,41),(15,36,26,44),(16,35,27,43)]])

40 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A···4F4G···4L6A···6F12A···12L
order12222222334···44···46···612···12
size11113333442···26···64···48···8

40 irreducible representations

dim111111222233366
type+++-+++-
imageC1C2C3C4C6C12D4Q8C3×D4C3×Q8A4C2×A4C4×A4D4×A4Q8×A4
kernelA4×C4⋊C4C2×C4×A4C22×C4⋊C4C4×A4C23×C4C22×C4C2×A4C2×A4C23C23C4⋊C4C2×C4C4C2C2
# reps132468112213411

Matrix representation of A4×C4⋊C4 in GL7(𝔽13)

1000000
0100000
0010000
0001000
00001200
00001201
00001210
,
1000000
0100000
0010000
0001000
00000121
00000120
00001120
,
1000000
0100000
0030000
0003000
0000001
0000100
0000010
,
121200000
2100000
0011000
001112000
0000100
0000010
0000001
,
8000000
10500000
00120000
0021000
0000100
0000010
0000001

G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,12,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,12,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[12,2,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,11,0,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[8,10,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] >;

A4×C4⋊C4 in GAP, Magma, Sage, TeX

A_4\times C_4\rtimes C_4
% in TeX

G:=Group("A4xC4:C4");
// GroupNames label

G:=SmallGroup(192,995);
// by ID

G=gap.SmallGroup(192,995);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,168,365,92,1027,1784]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^4=e^4=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽