direct product, metabelian, soluble, monomial
Aliases: A4×C4⋊C4, C4⋊(C4×A4), (C4×A4)⋊3C4, (C22×C4)⋊C12, C2.2(D4×A4), C2.1(Q8×A4), (C2×A4).3Q8, (C2×A4).13D4, (C23×C4).1C6, C23.6(C3×Q8), C24.25(C2×C6), C23.22(C3×D4), C23.16(C2×C12), C22.12(C22×A4), (C22×A4).15C22, (C22×C4⋊C4)⋊C3, C22⋊(C3×C4⋊C4), C2.4(C2×C4×A4), (C2×C4×A4).7C2, (C2×C4).1(C2×A4), (C2×A4).12(C2×C4), SmallGroup(192,995)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for A4×C4⋊C4
G = < a,b,c,d,e | a2=b2=c3=d4=e4=1, cac-1=ab=ba, ad=da, ae=ea, cbc-1=a, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >
Subgroups: 324 in 113 conjugacy classes, 33 normal (21 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C2×C4, C2×C4, C2×C4, C23, C23, C12, A4, C2×C6, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C24, C2×C12, C2×A4, C2×C4⋊C4, C23×C4, C23×C4, C3×C4⋊C4, C4×A4, C4×A4, C22×A4, C22×C4⋊C4, C2×C4×A4, C2×C4×A4, A4×C4⋊C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, A4, C2×C6, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2×A4, C3×C4⋊C4, C4×A4, C22×A4, C2×C4×A4, D4×A4, Q8×A4, A4×C4⋊C4
(5 7)(6 8)(13 15)(14 16)(17 19)(18 20)(25 27)(26 28)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(17 19)(18 20)(21 23)(22 24)(29 31)(30 32)(37 39)(38 40)(45 47)(46 48)
(1 43 17)(2 44 18)(3 41 19)(4 42 20)(5 32 36)(6 29 33)(7 30 34)(8 31 35)(9 13 40)(10 14 37)(11 15 38)(12 16 39)(21 27 47)(22 28 48)(23 25 45)(24 26 46)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 12 31 21)(2 11 32 24)(3 10 29 23)(4 9 30 22)(5 46 18 38)(6 45 19 37)(7 48 20 40)(8 47 17 39)(13 34 28 42)(14 33 25 41)(15 36 26 44)(16 35 27 43)
G:=sub<Sym(48)| (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24)(29,31)(30,32)(37,39)(38,40)(45,47)(46,48), (1,43,17)(2,44,18)(3,41,19)(4,42,20)(5,32,36)(6,29,33)(7,30,34)(8,31,35)(9,13,40)(10,14,37)(11,15,38)(12,16,39)(21,27,47)(22,28,48)(23,25,45)(24,26,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,12,31,21)(2,11,32,24)(3,10,29,23)(4,9,30,22)(5,46,18,38)(6,45,19,37)(7,48,20,40)(8,47,17,39)(13,34,28,42)(14,33,25,41)(15,36,26,44)(16,35,27,43)>;
G:=Group( (5,7)(6,8)(13,15)(14,16)(17,19)(18,20)(25,27)(26,28)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(17,19)(18,20)(21,23)(22,24)(29,31)(30,32)(37,39)(38,40)(45,47)(46,48), (1,43,17)(2,44,18)(3,41,19)(4,42,20)(5,32,36)(6,29,33)(7,30,34)(8,31,35)(9,13,40)(10,14,37)(11,15,38)(12,16,39)(21,27,47)(22,28,48)(23,25,45)(24,26,46), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,12,31,21)(2,11,32,24)(3,10,29,23)(4,9,30,22)(5,46,18,38)(6,45,19,37)(7,48,20,40)(8,47,17,39)(13,34,28,42)(14,33,25,41)(15,36,26,44)(16,35,27,43) );
G=PermutationGroup([[(5,7),(6,8),(13,15),(14,16),(17,19),(18,20),(25,27),(26,28),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(17,19),(18,20),(21,23),(22,24),(29,31),(30,32),(37,39),(38,40),(45,47),(46,48)], [(1,43,17),(2,44,18),(3,41,19),(4,42,20),(5,32,36),(6,29,33),(7,30,34),(8,31,35),(9,13,40),(10,14,37),(11,15,38),(12,16,39),(21,27,47),(22,28,48),(23,25,45),(24,26,46)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,12,31,21),(2,11,32,24),(3,10,29,23),(4,9,30,22),(5,46,18,38),(6,45,19,37),(7,48,20,40),(8,47,17,39),(13,34,28,42),(14,33,25,41),(15,36,26,44),(16,35,27,43)]])
40 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | ··· | 4F | 4G | ··· | 4L | 6A | ··· | 6F | 12A | ··· | 12L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 4 | 4 | 2 | ··· | 2 | 6 | ··· | 6 | 4 | ··· | 4 | 8 | ··· | 8 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 6 | 6 |
type | + | + | + | - | + | + | + | - | |||||||
image | C1 | C2 | C3 | C4 | C6 | C12 | D4 | Q8 | C3×D4 | C3×Q8 | A4 | C2×A4 | C4×A4 | D4×A4 | Q8×A4 |
kernel | A4×C4⋊C4 | C2×C4×A4 | C22×C4⋊C4 | C4×A4 | C23×C4 | C22×C4 | C2×A4 | C2×A4 | C23 | C23 | C4⋊C4 | C2×C4 | C4 | C2 | C2 |
# reps | 1 | 3 | 2 | 4 | 6 | 8 | 1 | 1 | 2 | 2 | 1 | 3 | 4 | 1 | 1 |
Matrix representation of A4×C4⋊C4 ►in GL7(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 1 |
0 | 0 | 0 | 0 | 12 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 1 |
0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 1 | 12 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
12 | 12 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 |
0 | 0 | 11 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
8 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 5 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(7,GF(13))| [1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,12,12,12,0,0,0,0,0,0,1,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,12,12,12,0,0,0,0,1,0,0],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0],[12,2,0,0,0,0,0,12,1,0,0,0,0,0,0,0,1,11,0,0,0,0,0,1,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[8,10,0,0,0,0,0,0,5,0,0,0,0,0,0,0,12,2,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1] >;
A4×C4⋊C4 in GAP, Magma, Sage, TeX
A_4\times C_4\rtimes C_4
% in TeX
G:=Group("A4xC4:C4");
// GroupNames label
G:=SmallGroup(192,995);
// by ID
G=gap.SmallGroup(192,995);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,2,168,365,92,1027,1784]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^4=e^4=1,c*a*c^-1=a*b=b*a,a*d=d*a,a*e=e*a,c*b*c^-1=a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations