Extensions 1→N→G→Q→1 with N=C2×A4 and Q=C2×C4

Direct product G=N×Q with N=C2×A4 and Q=C2×C4
dρLabelID
A4×C22×C448A4xC2^2xC4192,1496

Semidirect products G=N:Q with N=C2×A4 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C2×A4)⋊1(C2×C4) = C2×C4×S4φ: C2×C4/C4C2 ⊆ Out C2×A424(C2xA4):1(C2xC4)192,1469
(C2×A4)⋊2(C2×C4) = C22×A4⋊C4φ: C2×C4/C22C2 ⊆ Out C2×A448(C2xA4):2(C2xC4)192,1487

Non-split extensions G=N.Q with N=C2×A4 and Q=C2×C4
extensionφ:Q→Out NdρLabelID
(C2×A4).1(C2×C4) = C8×S4φ: C2×C4/C4C2 ⊆ Out C2×A4243(C2xA4).1(C2xC4)192,958
(C2×A4).2(C2×C4) = C8⋊S4φ: C2×C4/C4C2 ⊆ Out C2×A4246(C2xA4).2(C2xC4)192,959
(C2×A4).3(C2×C4) = C4×A4⋊C4φ: C2×C4/C4C2 ⊆ Out C2×A448(C2xA4).3(C2xC4)192,969
(C2×A4).4(C2×C4) = C24.3D6φ: C2×C4/C4C2 ⊆ Out C2×A448(C2xA4).4(C2xC4)192,970
(C2×A4).5(C2×C4) = C24.5D6φ: C2×C4/C4C2 ⊆ Out C2×A424(C2xA4).5(C2xC4)192,972
(C2×A4).6(C2×C4) = C2×A4⋊C8φ: C2×C4/C22C2 ⊆ Out C2×A448(C2xA4).6(C2xC4)192,967
(C2×A4).7(C2×C4) = A4⋊M4(2)φ: C2×C4/C22C2 ⊆ Out C2×A4246(C2xA4).7(C2xC4)192,968
(C2×A4).8(C2×C4) = C24.4D6φ: C2×C4/C22C2 ⊆ Out C2×A448(C2xA4).8(C2xC4)192,971
(C2×A4).9(C2×C4) = C25.S3φ: C2×C4/C22C2 ⊆ Out C2×A424(C2xA4).9(C2xC4)192,991
(C2×A4).10(C2×C4) = A4×C42φ: trivial image48(C2xA4).10(C2xC4)192,993
(C2×A4).11(C2×C4) = A4×C22⋊C4φ: trivial image24(C2xA4).11(C2xC4)192,994
(C2×A4).12(C2×C4) = A4×C4⋊C4φ: trivial image48(C2xA4).12(C2xC4)192,995
(C2×A4).13(C2×C4) = A4×C2×C8φ: trivial image48(C2xA4).13(C2xC4)192,1010
(C2×A4).14(C2×C4) = A4×M4(2)φ: trivial image246(C2xA4).14(C2xC4)192,1011

׿
×
𝔽