Extensions 1→N→G→Q→1 with N=C2xA4 and Q=C2xC4

Direct product G=NxQ with N=C2xA4 and Q=C2xC4
dρLabelID
A4xC22xC448A4xC2^2xC4192,1496

Semidirect products G=N:Q with N=C2xA4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xA4):1(C2xC4) = C2xC4xS4φ: C2xC4/C4C2 ⊆ Out C2xA424(C2xA4):1(C2xC4)192,1469
(C2xA4):2(C2xC4) = C22xA4:C4φ: C2xC4/C22C2 ⊆ Out C2xA448(C2xA4):2(C2xC4)192,1487

Non-split extensions G=N.Q with N=C2xA4 and Q=C2xC4
extensionφ:Q→Out NdρLabelID
(C2xA4).1(C2xC4) = C8xS4φ: C2xC4/C4C2 ⊆ Out C2xA4243(C2xA4).1(C2xC4)192,958
(C2xA4).2(C2xC4) = C8:S4φ: C2xC4/C4C2 ⊆ Out C2xA4246(C2xA4).2(C2xC4)192,959
(C2xA4).3(C2xC4) = C4xA4:C4φ: C2xC4/C4C2 ⊆ Out C2xA448(C2xA4).3(C2xC4)192,969
(C2xA4).4(C2xC4) = C24.3D6φ: C2xC4/C4C2 ⊆ Out C2xA448(C2xA4).4(C2xC4)192,970
(C2xA4).5(C2xC4) = C24.5D6φ: C2xC4/C4C2 ⊆ Out C2xA424(C2xA4).5(C2xC4)192,972
(C2xA4).6(C2xC4) = C2xA4:C8φ: C2xC4/C22C2 ⊆ Out C2xA448(C2xA4).6(C2xC4)192,967
(C2xA4).7(C2xC4) = A4:M4(2)φ: C2xC4/C22C2 ⊆ Out C2xA4246(C2xA4).7(C2xC4)192,968
(C2xA4).8(C2xC4) = C24.4D6φ: C2xC4/C22C2 ⊆ Out C2xA448(C2xA4).8(C2xC4)192,971
(C2xA4).9(C2xC4) = C25.S3φ: C2xC4/C22C2 ⊆ Out C2xA424(C2xA4).9(C2xC4)192,991
(C2xA4).10(C2xC4) = A4xC42φ: trivial image48(C2xA4).10(C2xC4)192,993
(C2xA4).11(C2xC4) = A4xC22:C4φ: trivial image24(C2xA4).11(C2xC4)192,994
(C2xA4).12(C2xC4) = A4xC4:C4φ: trivial image48(C2xA4).12(C2xC4)192,995
(C2xA4).13(C2xC4) = A4xC2xC8φ: trivial image48(C2xA4).13(C2xC4)192,1010
(C2xA4).14(C2xC4) = A4xM4(2)φ: trivial image246(C2xA4).14(C2xC4)192,1011

׿
x
:
Z
F
o
wr
Q
<