extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4)⋊1C6 = SL2(𝔽3)⋊5D4 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):1C6 | 192,1003 |
(C2×C4○D4)⋊2C6 = C2×D4.A4 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 32 | | (C2xC4oD4):2C6 | 192,1503 |
(C2×C4○D4)⋊3C6 = 2- 1+4⋊3C6 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4):3C6 | 192,1504 |
(C2×C4○D4)⋊4C6 = C22×C4.A4 | φ: C6/C2 → C3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4):4C6 | 192,1500 |
(C2×C4○D4)⋊5C6 = C3×D4⋊D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):5C6 | 192,882 |
(C2×C4○D4)⋊6C6 = C3×C22.19C24 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):6C6 | 192,1414 |
(C2×C4○D4)⋊7C6 = C3×C22.26C24 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):7C6 | 192,1421 |
(C2×C4○D4)⋊8C6 = C3×C22.29C24 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):8C6 | 192,1424 |
(C2×C4○D4)⋊9C6 = C3×C22.31C24 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):9C6 | 192,1426 |
(C2×C4○D4)⋊10C6 = C3×D4⋊5D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):10C6 | 192,1435 |
(C2×C4○D4)⋊11C6 = C3×D4⋊6D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):11C6 | 192,1436 |
(C2×C4○D4)⋊12C6 = C3×Q8⋊5D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):12C6 | 192,1437 |
(C2×C4○D4)⋊13C6 = C3×Q8⋊6D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):13C6 | 192,1439 |
(C2×C4○D4)⋊14C6 = C6×C4○D8 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):14C6 | 192,1461 |
(C2×C4○D4)⋊15C6 = C6×C8⋊C22 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):15C6 | 192,1462 |
(C2×C4○D4)⋊16C6 = C3×D8⋊C22 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4):16C6 | 192,1464 |
(C2×C4○D4)⋊17C6 = C6×2+ 1+4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4):17C6 | 192,1534 |
(C2×C4○D4)⋊18C6 = C6×2- 1+4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4):18C6 | 192,1535 |
(C2×C4○D4)⋊19C6 = C3×C2.C25 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4):19C6 | 192,1536 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×C4○D4).1C6 = C4○D4⋊C12 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).1C6 | 192,999 |
(C2×C4○D4).2C6 = SL2(𝔽3)⋊6D4 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).2C6 | 192,1005 |
(C2×C4○D4).3C6 = M4(2).A4 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 32 | 4 | (C2xC4oD4).3C6 | 192,1013 |
(C2×C4○D4).4C6 = C2×Q8.A4 | φ: C6/C1 → C6 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4).4C6 | 192,1502 |
(C2×C4○D4).5C6 = C4×C4.A4 | φ: C6/C2 → C3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).5C6 | 192,997 |
(C2×C4○D4).6C6 = C2×C8.A4 | φ: C6/C2 → C3 ⊆ Out C2×C4○D4 | 64 | | (C2xC4oD4).6C6 | 192,1012 |
(C2×C4○D4).7C6 = C3×(C22×C8)⋊C2 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).7C6 | 192,841 |
(C2×C4○D4).8C6 = C3×C23.C23 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).8C6 | 192,843 |
(C2×C4○D4).9C6 = C3×M4(2).8C22 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).9C6 | 192,846 |
(C2×C4○D4).10C6 = C3×C23.24D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).10C6 | 192,849 |
(C2×C4○D4).11C6 = C3×C23.36D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).11C6 | 192,850 |
(C2×C4○D4).12C6 = C6×C4≀C2 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | | (C2xC4oD4).12C6 | 192,853 |
(C2×C4○D4).13C6 = C3×C42⋊C22 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).13C6 | 192,854 |
(C2×C4○D4).14C6 = C3×D4.7D4 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).14C6 | 192,885 |
(C2×C4○D4).15C6 = C3×C23.33C23 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).15C6 | 192,1409 |
(C2×C4○D4).16C6 = C3×C23.38C23 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).16C6 | 192,1425 |
(C2×C4○D4).17C6 = C3×Q8○M4(2) | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 48 | 4 | (C2xC4oD4).17C6 | 192,1457 |
(C2×C4○D4).18C6 = C6×C8.C22 | φ: C6/C3 → C2 ⊆ Out C2×C4○D4 | 96 | | (C2xC4oD4).18C6 | 192,1463 |
(C2×C4○D4).19C6 = C12×C4○D4 | φ: trivial image | 96 | | (C2xC4oD4).19C6 | 192,1406 |
(C2×C4○D4).20C6 = C6×C8○D4 | φ: trivial image | 96 | | (C2xC4oD4).20C6 | 192,1456 |