Copied to
clipboard

G = C8.2D12order 192 = 26·3

2nd non-split extension by C8 of D12 acting via D12/C6=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C8.2D12, C24.30D4, C4.Q84S3, C4⋊C4.41D6, (C2×C8).62D6, C4.52(C2×D12), C32(C8.D4), C12.132(C2×D4), C4.D12.5C2, (C2×Dic12)⋊24C2, C12.32(C4○D4), C6.SD1617C2, C6.45(C4⋊D4), C4.5(Q83S3), (C2×Dic3).43D4, (C22×S3).26D4, C22.219(S3×D4), C2.18(C12⋊D4), (C2×C12).283C23, (C2×C24).111C22, C2.24(D4.D6), C6.43(C8.C22), (C2×Dic6).84C22, (C3×C4.Q8)⋊4C2, (C2×C8⋊S3).3C2, (C2×C6).288(C2×D4), (C2×C3⋊C8).60C22, (S3×C2×C4).35C22, (C3×C4⋊C4).76C22, (C2×C4).386(C22×S3), SmallGroup(192,426)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C8.2D12
C1C3C6C2×C6C2×C12S3×C2×C4C2×C8⋊S3 — C8.2D12
C3C6C2×C12 — C8.2D12
C1C22C2×C4C4.Q8

Generators and relations for C8.2D12
 G = < a,b,c | a8=b12=1, c2=a4, bab-1=a3, cac-1=a-1, cbc-1=a4b-1 >

Subgroups: 320 in 110 conjugacy classes, 41 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), Q16, C22×C4, C2×Q8, C3⋊C8, C24, Dic6, C4×S3, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C22×S3, Q8⋊C4, C4.Q8, C22⋊Q8, C2×M4(2), C2×Q16, C8⋊S3, Dic12, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C8.D4, C6.SD16, C3×C4.Q8, C4.D12, C2×C8⋊S3, C2×Dic12, C8.2D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, D12, C22×S3, C4⋊D4, C8.C22, C2×D12, S3×D4, Q83S3, C8.D4, C12⋊D4, D4.D6, C8.2D12

Character table of C8.2D12

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
 size 111112222881224242224412124488884444
ρ1111111111111111111111111111111    trivial
ρ21111-11111-1-11-1111-1-11111-1-111-1-1-1-1    linear of order 2
ρ3111111111-11-11111-1-1-1-111-1-111-1-1-1-1    linear of order 2
ρ41111-111111-1-1-111111-1-11111111111    linear of order 2
ρ51111-1111-11-1-11111-1-1111111-1-1-1-1-1-1    linear of order 2
ρ611111111-1-11-1-1111111111-1-1-1-11111    linear of order 2
ρ71111-1111-1-1-11111111-1-111-1-1-1-11111    linear of order 2
ρ811111111-1111-1111-1-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ92-2-2202-2200000-2-22-22002-20000-222-2    orthogonal lifted from D4
ρ102-2-2202-2200000-2-222-2002-200002-2-22    orthogonal lifted from D4
ρ1122220-12222000-1-1-12200-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1222220-122-22000-1-1-1-2-200-1-1-1-1111111    orthogonal lifted from D6
ρ13222222-2-200-2002220000-2-200000000    orthogonal lifted from D4
ρ142222-22-2-2002002220000-2-200000000    orthogonal lifted from D4
ρ1522220-122-2-2000-1-1-12200-1-11111-1-1-1-1    orthogonal lifted from D6
ρ1622220-1222-2000-1-1-1-2-200-1-111-1-11111    orthogonal lifted from D6
ρ172-2-220-1-220000011-12-200-11-333-3-111-1    orthogonal lifted from D12
ρ182-2-220-1-220000011-12-200-113-3-33-111-1    orthogonal lifted from D12
ρ192-2-220-1-220000011-1-2200-113-33-31-1-11    orthogonal lifted from D12
ρ202-2-220-1-220000011-1-2200-11-33-331-1-11    orthogonal lifted from D12
ρ212-2-22022-200000-2-22002i-2i-2200000000    complex lifted from C4○D4
ρ222-2-22022-200000-2-2200-2i2i-2200000000    complex lifted from C4○D4
ρ2344440-2-4-400000-2-2-200002200000000    orthogonal lifted from S3×D4
ρ244-4-440-24-40000022-200002-200000000    orthogonal lifted from Q83S3, Schur index 2
ρ254-44-40400000004-4-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-4040000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2744-4-40-200000002-220000000000-66-66    symplectic lifted from D4.D6, Schur index 2
ρ284-44-40-20000000-222000000000066-6-6    symplectic lifted from D4.D6, Schur index 2
ρ294-44-40-20000000-2220000000000-6-666    symplectic lifted from D4.D6, Schur index 2
ρ3044-4-40-200000002-2200000000006-66-6    symplectic lifted from D4.D6, Schur index 2

Smallest permutation representation of C8.2D12
On 96 points
Generators in S96
(1 40 65 16 57 92 31 73)(2 17 32 41 58 74 66 93)(3 42 67 18 59 94 33 75)(4 19 34 43 60 76 68 95)(5 44 69 20 49 96 35 77)(6 21 36 45 50 78 70 85)(7 46 71 22 51 86 25 79)(8 23 26 47 52 80 72 87)(9 48 61 24 53 88 27 81)(10 13 28 37 54 82 62 89)(11 38 63 14 55 90 29 83)(12 15 30 39 56 84 64 91)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 56 57 12)(2 11 58 55)(3 54 59 10)(4 9 60 53)(5 52 49 8)(6 7 50 51)(13 75 82 18)(14 17 83 74)(15 73 84 16)(19 81 76 24)(20 23 77 80)(21 79 78 22)(25 70 71 36)(26 35 72 69)(27 68 61 34)(28 33 62 67)(29 66 63 32)(30 31 64 65)(37 94 89 42)(38 41 90 93)(39 92 91 40)(43 88 95 48)(44 47 96 87)(45 86 85 46)

G:=sub<Sym(96)| (1,40,65,16,57,92,31,73)(2,17,32,41,58,74,66,93)(3,42,67,18,59,94,33,75)(4,19,34,43,60,76,68,95)(5,44,69,20,49,96,35,77)(6,21,36,45,50,78,70,85)(7,46,71,22,51,86,25,79)(8,23,26,47,52,80,72,87)(9,48,61,24,53,88,27,81)(10,13,28,37,54,82,62,89)(11,38,63,14,55,90,29,83)(12,15,30,39,56,84,64,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,56,57,12)(2,11,58,55)(3,54,59,10)(4,9,60,53)(5,52,49,8)(6,7,50,51)(13,75,82,18)(14,17,83,74)(15,73,84,16)(19,81,76,24)(20,23,77,80)(21,79,78,22)(25,70,71,36)(26,35,72,69)(27,68,61,34)(28,33,62,67)(29,66,63,32)(30,31,64,65)(37,94,89,42)(38,41,90,93)(39,92,91,40)(43,88,95,48)(44,47,96,87)(45,86,85,46)>;

G:=Group( (1,40,65,16,57,92,31,73)(2,17,32,41,58,74,66,93)(3,42,67,18,59,94,33,75)(4,19,34,43,60,76,68,95)(5,44,69,20,49,96,35,77)(6,21,36,45,50,78,70,85)(7,46,71,22,51,86,25,79)(8,23,26,47,52,80,72,87)(9,48,61,24,53,88,27,81)(10,13,28,37,54,82,62,89)(11,38,63,14,55,90,29,83)(12,15,30,39,56,84,64,91), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,56,57,12)(2,11,58,55)(3,54,59,10)(4,9,60,53)(5,52,49,8)(6,7,50,51)(13,75,82,18)(14,17,83,74)(15,73,84,16)(19,81,76,24)(20,23,77,80)(21,79,78,22)(25,70,71,36)(26,35,72,69)(27,68,61,34)(28,33,62,67)(29,66,63,32)(30,31,64,65)(37,94,89,42)(38,41,90,93)(39,92,91,40)(43,88,95,48)(44,47,96,87)(45,86,85,46) );

G=PermutationGroup([[(1,40,65,16,57,92,31,73),(2,17,32,41,58,74,66,93),(3,42,67,18,59,94,33,75),(4,19,34,43,60,76,68,95),(5,44,69,20,49,96,35,77),(6,21,36,45,50,78,70,85),(7,46,71,22,51,86,25,79),(8,23,26,47,52,80,72,87),(9,48,61,24,53,88,27,81),(10,13,28,37,54,82,62,89),(11,38,63,14,55,90,29,83),(12,15,30,39,56,84,64,91)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,56,57,12),(2,11,58,55),(3,54,59,10),(4,9,60,53),(5,52,49,8),(6,7,50,51),(13,75,82,18),(14,17,83,74),(15,73,84,16),(19,81,76,24),(20,23,77,80),(21,79,78,22),(25,70,71,36),(26,35,72,69),(27,68,61,34),(28,33,62,67),(29,66,63,32),(30,31,64,65),(37,94,89,42),(38,41,90,93),(39,92,91,40),(43,88,95,48),(44,47,96,87),(45,86,85,46)]])

Matrix representation of C8.2D12 in GL6(𝔽73)

7200000
0720000
003453968
006839534
00345345
0068396839
,
72710000
110000
0043152723
0058585050
0027233058
0050501515
,
72710000
010000
0058585050
0043152723
0050501515
0027233058

G:=sub<GL(6,GF(73))| [72,0,0,0,0,0,0,72,0,0,0,0,0,0,34,68,34,68,0,0,5,39,5,39,0,0,39,5,34,68,0,0,68,34,5,39],[72,1,0,0,0,0,71,1,0,0,0,0,0,0,43,58,27,50,0,0,15,58,23,50,0,0,27,50,30,15,0,0,23,50,58,15],[72,0,0,0,0,0,71,1,0,0,0,0,0,0,58,43,50,27,0,0,58,15,50,23,0,0,50,27,15,30,0,0,50,23,15,58] >;

C8.2D12 in GAP, Magma, Sage, TeX

C_8._2D_{12}
% in TeX

G:=Group("C8.2D12");
// GroupNames label

G:=SmallGroup(192,426);
// by ID

G=gap.SmallGroup(192,426);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,120,254,555,226,438,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=1,c^2=a^4,b*a*b^-1=a^3,c*a*c^-1=a^-1,c*b*c^-1=a^4*b^-1>;
// generators/relations

Export

Character table of C8.2D12 in TeX

׿
×
𝔽