Extensions 1→N→G→Q→1 with N=C8 and Q=D12

Direct product G=N×Q with N=C8 and Q=D12
dρLabelID
C8×D1296C8xD12192,245

Semidirect products G=N:Q with N=C8 and Q=D12
extensionφ:Q→Aut NdρLabelID
C81D12 = C8⋊D12φ: D12/C6C22 ⊆ Aut C896C8:1D12192,271
C82D12 = C247D4φ: D12/C6C22 ⊆ Aut C896C8:2D12192,424
C83D12 = C83D12φ: D12/C6C22 ⊆ Aut C896C8:3D12192,445
C84D12 = C124D8φ: D12/C12C2 ⊆ Aut C896C8:4D12192,254
C85D12 = C85D12φ: D12/C12C2 ⊆ Aut C896C8:5D12192,252
C86D12 = C86D12φ: D12/C12C2 ⊆ Aut C896C8:6D12192,247
C87D12 = D62D8φ: D12/D6C2 ⊆ Aut C896C8:7D12192,442
C88D12 = C88D12φ: D12/D6C2 ⊆ Aut C896C8:8D12192,423
C89D12 = C89D12φ: D12/D6C2 ⊆ Aut C896C8:9D12192,265

Non-split extensions G=N.Q with N=C8 and Q=D12
extensionφ:Q→Aut NdρLabelID
C8.1D12 = C8.D12φ: D12/C6C22 ⊆ Aut C896C8.1D12192,274
C8.2D12 = C8.2D12φ: D12/C6C22 ⊆ Aut C896C8.2D12192,426
C8.3D12 = C16⋊D6φ: D12/C6C22 ⊆ Aut C8484+C8.3D12192,467
C8.4D12 = C16.D6φ: D12/C6C22 ⊆ Aut C8964-C8.4D12192,468
C8.5D12 = D96φ: D12/C12C2 ⊆ Aut C8962+C8.5D12192,7
C8.6D12 = C32⋊S3φ: D12/C12C2 ⊆ Aut C8962C8.6D12192,8
C8.7D12 = Dic48φ: D12/C12C2 ⊆ Aut C81922-C8.7D12192,9
C8.8D12 = C8.8D12φ: D12/C12C2 ⊆ Aut C896C8.8D12192,255
C8.9D12 = C124Q16φ: D12/C12C2 ⊆ Aut C8192C8.9D12192,258
C8.10D12 = C2×D48φ: D12/C12C2 ⊆ Aut C896C8.10D12192,461
C8.11D12 = C2×C48⋊C2φ: D12/C12C2 ⊆ Aut C896C8.11D12192,462
C8.12D12 = C2×Dic24φ: D12/C12C2 ⊆ Aut C8192C8.12D12192,464
C8.13D12 = D487C2φ: D12/C12C2 ⊆ Aut C8962C8.13D12192,463
C8.14D12 = D2411C4φ: D12/C12C2 ⊆ Aut C8482C8.14D12192,259
C8.15D12 = C6.D16φ: D12/D6C2 ⊆ Aut C896C8.15D12192,50
C8.16D12 = C6.Q32φ: D12/D6C2 ⊆ Aut C8192C8.16D12192,51
C8.17D12 = D24.C4φ: D12/D6C2 ⊆ Aut C8484+C8.17D12192,54
C8.18D12 = C24.8D4φ: D12/D6C2 ⊆ Aut C8964-C8.18D12192,55
C8.19D12 = D62Q16φ: D12/D6C2 ⊆ Aut C896C8.19D12192,446
C8.20D12 = C24.18D4φ: D12/D6C2 ⊆ Aut C8964-C8.20D12192,455
C8.21D12 = C24.19D4φ: D12/D6C2 ⊆ Aut C8484+C8.21D12192,456
C8.22D12 = D248C4φ: D12/D6C2 ⊆ Aut C8484C8.22D12192,47
C8.23D12 = Dic12.C4φ: D12/D6C2 ⊆ Aut C8964C8.23D12192,56
C8.24D12 = C24.42D4φ: D12/D6C2 ⊆ Aut C8484C8.24D12192,457
C8.25D12 = C8.25D12φ: D12/D6C2 ⊆ Aut C8484C8.25D12192,73
C8.26D12 = Dic6.C8φ: D12/D6C2 ⊆ Aut C8964C8.26D12192,74
C8.27D12 = D244C4φ: D12/D6C2 ⊆ Aut C8484C8.27D12192,276
C8.28D12 = C12⋊C16central extension (φ=1)192C8.28D12192,21
C8.29D12 = C24.1C8central extension (φ=1)482C8.29D12192,22
C8.30D12 = D6⋊C16central extension (φ=1)96C8.30D12192,66
C8.31D12 = D12.C8central extension (φ=1)962C8.31D12192,67

׿
×
𝔽