Direct product G=NxQ with N=C24 and Q=D4
Semidirect products G=N:Q with N=C24 and Q=D4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C24:1D4 = C8:D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:1D4 | 192,271 |
C24:2D4 = C24:2D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:2D4 | 192,693 |
C24:3D4 = C24:3D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:3D4 | 192,694 |
C24:4D4 = D6:2D8 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:4D4 | 192,442 |
C24:5D4 = C24:5D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:5D4 | 192,710 |
C24:6D4 = D6:3D8 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:6D4 | 192,716 |
C24:7D4 = C24:7D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:7D4 | 192,424 |
C24:8D4 = C24:8D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:8D4 | 192,733 |
C24:9D4 = C24:9D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:9D4 | 192,735 |
C24:10D4 = C8:3D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:10D4 | 192,445 |
C24:11D4 = C24:11D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:11D4 | 192,713 |
C24:12D4 = C24:12D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:12D4 | 192,718 |
C24:13D4 = C8:8D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:13D4 | 192,423 |
C24:14D4 = C24:14D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:14D4 | 192,730 |
C24:15D4 = C24:15D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:15D4 | 192,734 |
C24:16D4 = C3xC8:D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:16D4 | 192,901 |
C24:17D4 = C3xC8:2D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:17D4 | 192,902 |
C24:18D4 = C3xC8:3D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:18D4 | 192,929 |
C24:19D4 = C8:9D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:19D4 | 192,265 |
C24:20D4 = C24:D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:20D4 | 192,686 |
C24:21D4 = C24:21D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24:21D4 | 192,687 |
C24:22D4 = C12:4D8 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:22D4 | 192,254 |
C24:23D4 = C8:5D12 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:23D4 | 192,252 |
C24:24D4 = C3xC8:4D4 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:24D4 | 192,926 |
C24:25D4 = C8xD12 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:25D4 | 192,245 |
C24:26D4 = C8:6D12 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:26D4 | 192,247 |
C24:27D4 = C3xC8:5D4 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:27D4 | 192,925 |
C24:28D4 = C3xC8:6D4 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24:28D4 | 192,869 |
C24:29D4 = C24:29D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:29D4 | 192,674 |
C24:30D4 = C24:30D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:30D4 | 192,673 |
C24:31D4 = C3xC8:7D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:31D4 | 192,899 |
C24:32D4 = C8xC3:D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:32D4 | 192,668 |
C24:33D4 = C24:33D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:33D4 | 192,670 |
C24:34D4 = C3xC8:8D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:34D4 | 192,898 |
C24:35D4 = C3xC8:9D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24:35D4 | 192,868 |
Non-split extensions G=N.Q with N=C24 and Q=D4
extension | φ:Q→Aut N | d | ρ | Label | ID |
C24.1D4 = C8.D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.1D4 | 192,274 |
C24.2D4 = C16:D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4+ | C24.2D4 | 192,467 |
C24.3D4 = C16.D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4- | C24.3D4 | 192,468 |
C24.4D4 = C24.4D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.4D4 | 192,696 |
C24.5D4 = C6.D16 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.5D4 | 192,50 |
C24.6D4 = C6.Q32 | φ: D4/C2 → C22 ⊆ Aut C24 | 192 | | C24.6D4 | 192,51 |
C24.7D4 = D24.C4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4+ | C24.7D4 | 192,54 |
C24.8D4 = C24.8D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4- | C24.8D4 | 192,55 |
C24.9D4 = C3:D32 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4+ | C24.9D4 | 192,78 |
C24.10D4 = D16.S3 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4- | C24.10D4 | 192,79 |
C24.11D4 = C3:SD64 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4+ | C24.11D4 | 192,80 |
C24.12D4 = C3:Q64 | φ: D4/C2 → C22 ⊆ Aut C24 | 192 | 4- | C24.12D4 | 192,81 |
C24.13D4 = D8:1Dic3 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.13D4 | 192,121 |
C24.14D4 = D8.Dic3 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.14D4 | 192,122 |
C24.15D4 = C6.5Q32 | φ: D4/C2 → C22 ⊆ Aut C24 | 192 | | C24.15D4 | 192,123 |
C24.16D4 = Q16.Dic3 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.16D4 | 192,124 |
C24.17D4 = D6:2Q16 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.17D4 | 192,446 |
C24.18D4 = C24.18D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4- | C24.18D4 | 192,455 |
C24.19D4 = C24.19D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4+ | C24.19D4 | 192,456 |
C24.20D4 = C2xC3:D16 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.20D4 | 192,705 |
C24.21D4 = C2xD8.S3 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.21D4 | 192,707 |
C24.22D4 = C24.22D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.22D4 | 192,714 |
C24.23D4 = C24.23D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.23D4 | 192,719 |
C24.24D4 = C2xC8.6D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.24D4 | 192,737 |
C24.25D4 = C2xC3:Q32 | φ: D4/C2 → C22 ⊆ Aut C24 | 192 | | C24.25D4 | 192,739 |
C24.26D4 = C24.26D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 192 | | C24.26D4 | 192,742 |
C24.27D4 = D6:3Q16 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.27D4 | 192,747 |
C24.28D4 = C24.28D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.28D4 | 192,750 |
C24.29D4 = C24.29D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.29D4 | 192,751 |
C24.30D4 = C8.2D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.30D4 | 192,426 |
C24.31D4 = C24.31D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.31D4 | 192,726 |
C24.32D4 = Q16:D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4+ | C24.32D4 | 192,752 |
C24.33D4 = D8.9D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4- | C24.33D4 | 192,754 |
C24.34D4 = D8.D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.34D4 | 192,706 |
C24.35D4 = C24.27C23 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.35D4 | 192,738 |
C24.36D4 = C24.36D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.36D4 | 192,748 |
C24.37D4 = C24.37D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.37D4 | 192,749 |
C24.38D4 = D24:8C4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.38D4 | 192,47 |
C24.39D4 = Dic12.C4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.39D4 | 192,56 |
C24.40D4 = D8:2Dic3 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.40D4 | 192,125 |
C24.41D4 = C24.41D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.41D4 | 192,126 |
C24.42D4 = C24.42D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.42D4 | 192,457 |
C24.43D4 = C24.43D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.43D4 | 192,727 |
C24.44D4 = C24.44D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.44D4 | 192,736 |
C24.45D4 = Q16.D6 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.45D4 | 192,753 |
C24.46D4 = C3xC8.D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.46D4 | 192,903 |
C24.47D4 = C3xC8.2D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | | C24.47D4 | 192,930 |
C24.48D4 = C3xC16:C22 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.48D4 | 192,942 |
C24.49D4 = C3xQ32:C2 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.49D4 | 192,943 |
C24.50D4 = C8.25D12 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.50D4 | 192,73 |
C24.51D4 = Dic6.C8 | φ: D4/C2 → C22 ⊆ Aut C24 | 96 | 4 | C24.51D4 | 192,74 |
C24.52D4 = C24.D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.52D4 | 192,112 |
C24.53D4 = D24:4C4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.53D4 | 192,276 |
C24.54D4 = C24.54D4 | φ: D4/C2 → C22 ⊆ Aut C24 | 48 | 4 | C24.54D4 | 192,704 |
C24.55D4 = D96 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2+ | C24.55D4 | 192,7 |
C24.56D4 = C32:S3 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.56D4 | 192,8 |
C24.57D4 = Dic48 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | 2- | C24.57D4 | 192,9 |
C24.58D4 = C8.8D12 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24.58D4 | 192,255 |
C24.59D4 = C12:4Q16 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | | C24.59D4 | 192,258 |
C24.60D4 = C2xD48 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24.60D4 | 192,461 |
C24.61D4 = C2xC48:C2 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24.61D4 | 192,462 |
C24.62D4 = C2xDic24 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | | C24.62D4 | 192,464 |
C24.63D4 = D48:7C2 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.63D4 | 192,463 |
C24.64D4 = C3xD32 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.64D4 | 192,177 |
C24.65D4 = C3xSD64 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.65D4 | 192,178 |
C24.66D4 = C3xQ64 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | 2 | C24.66D4 | 192,179 |
C24.67D4 = C3xC4:Q16 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | | C24.67D4 | 192,927 |
C24.68D4 = C6xD16 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24.68D4 | 192,938 |
C24.69D4 = C6xSD32 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24.69D4 | 192,939 |
C24.70D4 = C6xQ32 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | | C24.70D4 | 192,940 |
C24.71D4 = C12:C16 | φ: D4/C4 → C2 ⊆ Aut C24 | 192 | | C24.71D4 | 192,21 |
C24.72D4 = C24.1C8 | φ: D4/C4 → C2 ⊆ Aut C24 | 48 | 2 | C24.72D4 | 192,22 |
C24.73D4 = D12.C8 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.73D4 | 192,67 |
C24.74D4 = D24:11C4 | φ: D4/C4 → C2 ⊆ Aut C24 | 48 | 2 | C24.74D4 | 192,259 |
C24.75D4 = C3xC8.12D4 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | | C24.75D4 | 192,928 |
C24.76D4 = C3xC4oD16 | φ: D4/C4 → C2 ⊆ Aut C24 | 96 | 2 | C24.76D4 | 192,941 |
C24.77D4 = C3xC8oD8 | φ: D4/C4 → C2 ⊆ Aut C24 | 48 | 2 | C24.77D4 | 192,876 |
C24.78D4 = C2.Dic24 | φ: D4/C22 → C2 ⊆ Aut C24 | 192 | | C24.78D4 | 192,62 |
C24.79D4 = C2.D48 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24.79D4 | 192,68 |
C24.80D4 = M5(2):S3 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4+ | C24.80D4 | 192,75 |
C24.81D4 = C12.4D8 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 4- | C24.81D4 | 192,76 |
C24.82D4 = C24.82D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24.82D4 | 192,675 |
C24.83D4 = Q8.9D12 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4+ | C24.83D4 | 192,701 |
C24.84D4 = Q8.10D12 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 4- | C24.84D4 | 192,702 |
C24.85D4 = D24.1C4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 2 | C24.85D4 | 192,69 |
C24.86D4 = D24:2C4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.86D4 | 192,77 |
C24.87D4 = Q8.8D12 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.87D4 | 192,700 |
C24.88D4 = C3xC2.D16 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24.88D4 | 192,163 |
C24.89D4 = C3xC2.Q32 | φ: D4/C22 → C2 ⊆ Aut C24 | 192 | | C24.89D4 | 192,164 |
C24.90D4 = C3xM5(2):C2 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.90D4 | 192,167 |
C24.91D4 = C3xC8.17D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 4 | C24.91D4 | 192,168 |
C24.92D4 = C3xC8.18D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24.92D4 | 192,900 |
C24.93D4 = C3xD4.4D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.93D4 | 192,905 |
C24.94D4 = C3xD4.5D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 4 | C24.94D4 | 192,906 |
C24.95D4 = Dic3:C16 | φ: D4/C22 → C2 ⊆ Aut C24 | 192 | | C24.95D4 | 192,60 |
C24.96D4 = D6:C16 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24.96D4 | 192,66 |
C24.97D4 = C24.97D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.97D4 | 192,70 |
C24.98D4 = C24.98D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | | C24.98D4 | 192,108 |
C24.99D4 = C24.99D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 4 | C24.99D4 | 192,120 |
C24.100D4 = C24.100D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.100D4 | 192,703 |
C24.101D4 = C3xD8.C4 | φ: D4/C22 → C2 ⊆ Aut C24 | 96 | 2 | C24.101D4 | 192,165 |
C24.102D4 = C3xD8:2C4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.102D4 | 192,166 |
C24.103D4 = C3xD4.3D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.103D4 | 192,904 |
C24.104D4 = C3xC23.C8 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.104D4 | 192,155 |
C24.105D4 = C3xC8.26D4 | φ: D4/C22 → C2 ⊆ Aut C24 | 48 | 4 | C24.105D4 | 192,877 |
C24.106D4 = C3xC22:C16 | central extension (φ=1) | 96 | | C24.106D4 | 192,154 |
C24.107D4 = C3xD4.C8 | central extension (φ=1) | 96 | 2 | C24.107D4 | 192,156 |
C24.108D4 = C3xC4:C16 | central extension (φ=1) | 192 | | C24.108D4 | 192,169 |
C24.109D4 = C3xC8.C8 | central extension (φ=1) | 48 | 2 | C24.109D4 | 192,170 |
x
:
Z
F
o
wr
Q
<