Copied to
clipboard

G = D12.15D4order 192 = 26·3

15th non-split extension by D12 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12.15D4, C42.86D6, Dic6.15D4, C4:Q8:8S3, C4.58(S3xD4), C12.41(C2xD4), (C2xC12).12D4, (C2xQ8).73D6, C6.54C22wrC2, C42:4S3:14C2, C12.10D4:6C2, Q8.11D6:3C2, C3:3(D4.10D4), (C6xQ8).67C22, C2.22(C23:2D6), (C4xC12).142C22, (C2xC12).413C23, C4oD12.22C22, Q8.15D6.2C2, C4.Dic3.15C22, (C3xC4:Q8):8C2, (C2xC6).544(C2xD4), (C2xC4).11(C3:D4), C22.34(C2xC3:D4), (C2xC4).119(C22xS3), SmallGroup(192,654)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12.15D4
C1C3C6C12C2xC12C4oD12Q8.15D6 — D12.15D4
C3C6C2xC12 — D12.15D4
C1C2C2xC4C4:Q8

Generators and relations for D12.15D4
 G = < a,b,c,d | a12=b2=d2=1, c4=a6, bab=cac-1=a-1, dad=a5, cbc-1=a7b, dbd=a10b, dcd=c3 >

Subgroups: 400 in 142 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, Q8, Dic3, C12, C12, D6, C2xC6, C42, C4:C4, M4(2), SD16, Q16, C2xQ8, C2xQ8, C4oD4, C3:C8, Dic6, Dic6, C4xS3, D12, D12, C3:D4, C2xC12, C2xC12, C2xC12, C3xQ8, C4.10D4, C4wrC2, C4:Q8, C8.C22, 2- 1+4, C4.Dic3, Q8:2S3, C3:Q16, C4xC12, C3xC4:C4, C4oD12, C4oD12, S3xQ8, Q8:3S3, C6xQ8, D4.10D4, C42:4S3, C12.10D4, Q8.11D6, C3xC4:Q8, Q8.15D6, D12.15D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, S3xD4, C2xC3:D4, D4.10D4, C23:2D6, D12.15D4

Character table of D12.15D4

 class 12A2B2C2D34A4B4C4D4E4F4G4H4I6A6B6C8A8B12A12B12C12D12E12F12G12H12I12J
 size 112121222244448121222224244444448888
ρ1111111111111111111111111111111    trivial
ρ21111-1111-111-1-1-11111-11111111-1-1-1-1    linear of order 2
ρ3111-11111-111-1-11-11111-1111111-1-1-1-1    linear of order 2
ρ4111-1-111111111-1-1111-1-11111111111    linear of order 2
ρ5111-11111-1-1-1-111-1111-11-1-1-111-11-11-1    linear of order 2
ρ6111-1-11111-1-11-1-1-111111-1-1-111-1-11-11    linear of order 2
ρ7111111111-1-11-111111-1-1-1-1-111-1-11-11    linear of order 2
ρ81111-1111-1-1-1-11-111111-1-1-1-111-11-11-1    linear of order 2
ρ922-20-222-20000020-22-200000-2200000    orthogonal lifted from D4
ρ1022-20222-200000-20-22-200000-2200000    orthogonal lifted from D4
ρ1122-2202-22000000-2-22-2000002-200000    orthogonal lifted from D4
ρ12222002-2-2200-200022200000-2-20020-2    orthogonal lifted from D4
ρ13222002-2-2-200200022200000-2-200-202    orthogonal lifted from D4
ρ1422-2-202-220000002-22-2000002-200000    orthogonal lifted from D4
ρ1522200-122-222-2-200-1-1-100-1-1-1-1-1-11111    orthogonal lifted from D6
ρ1622200-1222222200-1-1-100-1-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1722200-122-2-2-2-2200-1-1-100111-1-11-11-11    orthogonal lifted from D6
ρ1822200-1222-2-22-200-1-1-100111-1-111-11-1    orthogonal lifted from D6
ρ1922200-1-2-2200-2000-1-1-100--3-3--311-3-3-1--31    complex lifted from C3:D4
ρ2022200-1-2-2200-2000-1-1-100-3--3-311--3--3-1-31    complex lifted from C3:D4
ρ2122200-1-2-2-2002000-1-1-100-3--3-311--3-31--3-1    complex lifted from C3:D4
ρ2222200-1-2-2-2002000-1-1-100--3-3--311-3--31-3-1    complex lifted from C3:D4
ρ2344-400-2-4400000002-2200000-2200000    orthogonal lifted from S3xD4
ρ2444-400-24-400000002-22000002-200000    orthogonal lifted from S3xD4
ρ254-40004000-2200000-4000-22200-20000    symplectic lifted from D4.10D4, Schur index 2
ρ264-400040002-200000-40002-2-20020000    symplectic lifted from D4.10D4, Schur index 2
ρ274-4000-20002-20000-2-322-300-1--31--31+-300-1+-30000    complex faithful
ρ284-4000-2000-220000-2-322-3001+-3-1+-3-1--3001--30000    complex faithful
ρ294-4000-2000-2200002-32-2-3001--3-1--3-1+-3001+-30000    complex faithful
ρ304-4000-20002-200002-32-2-300-1+-31+-31--300-1--30000    complex faithful

Smallest permutation representation of D12.15D4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 28)(14 27)(15 26)(16 25)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)
(1 47 4 44 7 41 10 38)(2 46 5 43 8 40 11 37)(3 45 6 42 9 39 12 48)(13 35 16 32 19 29 22 26)(14 34 17 31 20 28 23 25)(15 33 18 30 21 27 24 36)
(1 26)(2 31)(3 36)(4 29)(5 34)(6 27)(7 32)(8 25)(9 30)(10 35)(11 28)(12 33)(13 44)(14 37)(15 42)(16 47)(17 40)(18 45)(19 38)(20 43)(21 48)(22 41)(23 46)(24 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,28)(14,27)(15,26)(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29), (1,47,4,44,7,41,10,38)(2,46,5,43,8,40,11,37)(3,45,6,42,9,39,12,48)(13,35,16,32,19,29,22,26)(14,34,17,31,20,28,23,25)(15,33,18,30,21,27,24,36), (1,26)(2,31)(3,36)(4,29)(5,34)(6,27)(7,32)(8,25)(9,30)(10,35)(11,28)(12,33)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,28)(14,27)(15,26)(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29), (1,47,4,44,7,41,10,38)(2,46,5,43,8,40,11,37)(3,45,6,42,9,39,12,48)(13,35,16,32,19,29,22,26)(14,34,17,31,20,28,23,25)(15,33,18,30,21,27,24,36), (1,26)(2,31)(3,36)(4,29)(5,34)(6,27)(7,32)(8,25)(9,30)(10,35)(11,28)(12,33)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,28),(14,27),(15,26),(16,25),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29)], [(1,47,4,44,7,41,10,38),(2,46,5,43,8,40,11,37),(3,45,6,42,9,39,12,48),(13,35,16,32,19,29,22,26),(14,34,17,31,20,28,23,25),(15,33,18,30,21,27,24,36)], [(1,26),(2,31),(3,36),(4,29),(5,34),(6,27),(7,32),(8,25),(9,30),(10,35),(11,28),(12,33),(13,44),(14,37),(15,42),(16,47),(17,40),(18,45),(19,38),(20,43),(21,48),(22,41),(23,46),(24,39)]])

Matrix representation of D12.15D4 in GL4(F7) generated by

3436
3531
5356
6511
,
2602
2360
3644
3635
,
2445
6336
3014
1251
,
3666
2304
2606
4241
G:=sub<GL(4,GF(7))| [3,3,5,6,4,5,3,5,3,3,5,1,6,1,6,1],[2,2,3,3,6,3,6,6,0,6,4,3,2,0,4,5],[2,6,3,1,4,3,0,2,4,3,1,5,5,6,4,1],[3,2,2,4,6,3,6,2,6,0,0,4,6,4,6,1] >;

D12.15D4 in GAP, Magma, Sage, TeX

D_{12}._{15}D_4
% in TeX

G:=Group("D12.15D4");
// GroupNames label

G:=SmallGroup(192,654);
// by ID

G=gap.SmallGroup(192,654);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,184,1123,570,297,136,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=d^2=1,c^4=a^6,b*a*b=c*a*c^-1=a^-1,d*a*d=a^5,c*b*c^-1=a^7*b,d*b*d=a^10*b,d*c*d=c^3>;
// generators/relations

Export

Character table of D12.15D4 in TeX

׿
x
:
Z
F
o
wr
Q
<