metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D12.15D4, C42.86D6, Dic6.15D4, C4:Q8:8S3, C4.58(S3xD4), C12.41(C2xD4), (C2xC12).12D4, (C2xQ8).73D6, C6.54C22wrC2, C42:4S3:14C2, C12.10D4:6C2, Q8.11D6:3C2, C3:3(D4.10D4), (C6xQ8).67C22, C2.22(C23:2D6), (C4xC12).142C22, (C2xC12).413C23, C4oD12.22C22, Q8.15D6.2C2, C4.Dic3.15C22, (C3xC4:Q8):8C2, (C2xC6).544(C2xD4), (C2xC4).11(C3:D4), C22.34(C2xC3:D4), (C2xC4).119(C22xS3), SmallGroup(192,654)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D12.15D4
G = < a,b,c,d | a12=b2=d2=1, c4=a6, bab=cac-1=a-1, dad=a5, cbc-1=a7b, dbd=a10b, dcd=c3 >
Subgroups: 400 in 142 conjugacy classes, 39 normal (19 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, Q8, Dic3, C12, C12, D6, C2xC6, C42, C4:C4, M4(2), SD16, Q16, C2xQ8, C2xQ8, C4oD4, C3:C8, Dic6, Dic6, C4xS3, D12, D12, C3:D4, C2xC12, C2xC12, C2xC12, C3xQ8, C4.10D4, C4wrC2, C4:Q8, C8.C22, 2- 1+4, C4.Dic3, Q8:2S3, C3:Q16, C4xC12, C3xC4:C4, C4oD12, C4oD12, S3xQ8, Q8:3S3, C6xQ8, D4.10D4, C42:4S3, C12.10D4, Q8.11D6, C3xC4:Q8, Q8.15D6, D12.15D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, S3xD4, C2xC3:D4, D4.10D4, C23:2D6, D12.15D4
Character table of D12.15D4
class | 1 | 2A | 2B | 2C | 2D | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 12I | 12J | |
size | 1 | 1 | 2 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 12 | 12 | 2 | 2 | 2 | 24 | 24 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | -2 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | 2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 2 | 0 | -2 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | -2 | 0 | 2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -2 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ17 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 2 | -2 | -2 | 2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ19 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | -√-3 | √-3 | -√-3 | 1 | 1 | √-3 | √-3 | -1 | -√-3 | 1 | complex lifted from C3:D4 |
ρ20 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | √-3 | -√-3 | √-3 | 1 | 1 | -√-3 | -√-3 | -1 | √-3 | 1 | complex lifted from C3:D4 |
ρ21 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | √-3 | -√-3 | √-3 | 1 | 1 | -√-3 | √-3 | 1 | -√-3 | -1 | complex lifted from C3:D4 |
ρ22 | 2 | 2 | 2 | 0 | 0 | -1 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | -√-3 | √-3 | -√-3 | 1 | 1 | √-3 | -√-3 | 1 | √-3 | -1 | complex lifted from C3:D4 |
ρ23 | 4 | 4 | -4 | 0 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | -2 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3xD4 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | symplectic lifted from D4.10D4, Schur index 2 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | -1-√-3 | 1-√-3 | 1+√-3 | 0 | 0 | -1+√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | -2√-3 | 2 | 2√-3 | 0 | 0 | 1+√-3 | -1+√-3 | -1-√-3 | 0 | 0 | 1-√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | 1-√-3 | -1-√-3 | -1+√-3 | 0 | 0 | 1+√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 2√-3 | 2 | -2√-3 | 0 | 0 | -1+√-3 | 1+√-3 | 1-√-3 | 0 | 0 | -1-√-3 | 0 | 0 | 0 | 0 | complex faithful |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 48)(6 47)(7 46)(8 45)(9 44)(10 43)(11 42)(12 41)(13 28)(14 27)(15 26)(16 25)(17 36)(18 35)(19 34)(20 33)(21 32)(22 31)(23 30)(24 29)
(1 47 4 44 7 41 10 38)(2 46 5 43 8 40 11 37)(3 45 6 42 9 39 12 48)(13 35 16 32 19 29 22 26)(14 34 17 31 20 28 23 25)(15 33 18 30 21 27 24 36)
(1 26)(2 31)(3 36)(4 29)(5 34)(6 27)(7 32)(8 25)(9 30)(10 35)(11 28)(12 33)(13 44)(14 37)(15 42)(16 47)(17 40)(18 45)(19 38)(20 43)(21 48)(22 41)(23 46)(24 39)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,28)(14,27)(15,26)(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29), (1,47,4,44,7,41,10,38)(2,46,5,43,8,40,11,37)(3,45,6,42,9,39,12,48)(13,35,16,32,19,29,22,26)(14,34,17,31,20,28,23,25)(15,33,18,30,21,27,24,36), (1,26)(2,31)(3,36)(4,29)(5,34)(6,27)(7,32)(8,25)(9,30)(10,35)(11,28)(12,33)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,48)(6,47)(7,46)(8,45)(9,44)(10,43)(11,42)(12,41)(13,28)(14,27)(15,26)(16,25)(17,36)(18,35)(19,34)(20,33)(21,32)(22,31)(23,30)(24,29), (1,47,4,44,7,41,10,38)(2,46,5,43,8,40,11,37)(3,45,6,42,9,39,12,48)(13,35,16,32,19,29,22,26)(14,34,17,31,20,28,23,25)(15,33,18,30,21,27,24,36), (1,26)(2,31)(3,36)(4,29)(5,34)(6,27)(7,32)(8,25)(9,30)(10,35)(11,28)(12,33)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,48),(6,47),(7,46),(8,45),(9,44),(10,43),(11,42),(12,41),(13,28),(14,27),(15,26),(16,25),(17,36),(18,35),(19,34),(20,33),(21,32),(22,31),(23,30),(24,29)], [(1,47,4,44,7,41,10,38),(2,46,5,43,8,40,11,37),(3,45,6,42,9,39,12,48),(13,35,16,32,19,29,22,26),(14,34,17,31,20,28,23,25),(15,33,18,30,21,27,24,36)], [(1,26),(2,31),(3,36),(4,29),(5,34),(6,27),(7,32),(8,25),(9,30),(10,35),(11,28),(12,33),(13,44),(14,37),(15,42),(16,47),(17,40),(18,45),(19,38),(20,43),(21,48),(22,41),(23,46),(24,39)]])
Matrix representation of D12.15D4 ►in GL4(F7) generated by
3 | 4 | 3 | 6 |
3 | 5 | 3 | 1 |
5 | 3 | 5 | 6 |
6 | 5 | 1 | 1 |
2 | 6 | 0 | 2 |
2 | 3 | 6 | 0 |
3 | 6 | 4 | 4 |
3 | 6 | 3 | 5 |
2 | 4 | 4 | 5 |
6 | 3 | 3 | 6 |
3 | 0 | 1 | 4 |
1 | 2 | 5 | 1 |
3 | 6 | 6 | 6 |
2 | 3 | 0 | 4 |
2 | 6 | 0 | 6 |
4 | 2 | 4 | 1 |
G:=sub<GL(4,GF(7))| [3,3,5,6,4,5,3,5,3,3,5,1,6,1,6,1],[2,2,3,3,6,3,6,6,0,6,4,3,2,0,4,5],[2,6,3,1,4,3,0,2,4,3,1,5,5,6,4,1],[3,2,2,4,6,3,6,2,6,0,0,4,6,4,6,1] >;
D12.15D4 in GAP, Magma, Sage, TeX
D_{12}._{15}D_4
% in TeX
G:=Group("D12.15D4");
// GroupNames label
G:=SmallGroup(192,654);
// by ID
G=gap.SmallGroup(192,654);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,254,219,184,1123,570,297,136,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^12=b^2=d^2=1,c^4=a^6,b*a*b=c*a*c^-1=a^-1,d*a*d=a^5,c*b*c^-1=a^7*b,d*b*d=a^10*b,d*c*d=c^3>;
// generators/relations
Export