Copied to
clipboard

G = Q8.15D6order 96 = 25·3

1st non-split extension by Q8 of D6 acting through Inn(Q8)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Q8.15D6, C6.10C24, D6.5C23, C3:12- 1+4, C12.24C23, D12.13C22, Dic3.6C23, Dic6.13C22, (C2xQ8):7S3, (C6xQ8):7C2, (S3xQ8):4C2, Q8o(C3:D4), C4oD12:6C2, (C2xC4).24D6, Q8:3S3:4C2, (C4xS3).5C22, C2.11(S3xC23), (C2xC6).68C23, C4.24(C22xS3), C3:D4.2C22, (C2xC12).48C22, C22.7(C22xS3), (C3xQ8).10C22, SmallGroup(96,214)

Series: Derived Chief Lower central Upper central

C1C6 — Q8.15D6
C1C3C6D6C4xS3S3xQ8 — Q8.15D6
C3C6 — Q8.15D6
C1C2C2xQ8

Generators and relations for Q8.15D6
 G = < a,b,c,d | a4=1, b2=c6=d2=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=dbd-1=a2b, dcd-1=c5 >

Subgroups: 274 in 146 conjugacy classes, 85 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, Q8, Dic3, C12, D6, C2xC6, C2xQ8, C2xQ8, C4oD4, Dic6, C4xS3, D12, C3:D4, C2xC12, C3xQ8, 2- 1+4, C4oD12, S3xQ8, Q8:3S3, C6xQ8, Q8.15D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2- 1+4, S3xC23, Q8.15D6

Character table of Q8.15D6

 class 12A2B2C2D2E2F34A4B4C4D4E4F4G4H4I4J6A6B6C12A12B12C12D12E12F
 size 112666622222226666222444444
ρ1111111111111111111111111111    trivial
ρ211-111-111-11-1-111-1-1-11-1-11111-1-1-1    linear of order 2
ρ3111-1-1-1-11111111-1-1-1-1111111111    linear of order 2
ρ411-1-1-11-11-11-1-111111-1-1-11111-1-1-1    linear of order 2
ρ5111-1-1111-111-1-1-1-11-111111-1-1-1-11    linear of order 2
ρ611-1-1-1-11111-11-1-11-111-1-111-1-111-1    linear of order 2
ρ711111-1-11-111-1-1-11-11-11111-1-1-1-11    linear of order 2
ρ811-1111-1111-11-1-1-11-1-1-1-111-1-111-1    linear of order 2
ρ911-1-11-1-111-11-11-111-11-1-11-1-111-11    linear of order 2
ρ10111-111-11-1-1-111-1-1-111111-1-11-11-1    linear of order 2
ρ1111-11-11111-11-11-1-1-11-1-1-11-1-111-11    linear of order 2
ρ121111-1-111-1-1-111-111-1-1111-1-11-11-1    linear of order 2
ρ1311-11-1-1-11-1-111-11-1111-1-11-11-1-111    linear of order 2
ρ141111-11-111-1-1-1-111-1-11111-11-11-1-1    linear of order 2
ρ1511-1-11111-1-111-111-1-1-1-1-11-11-1-111    linear of order 2
ρ16111-11-1111-1-1-1-11-111-1111-11-11-1-1    linear of order 2
ρ1722-20000-122-22-2-2000011-1-111-1-11    orthogonal lifted from D6
ρ182220000-12222220000-1-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ192220000-12-2-2-2-220000-1-1-11-11-111    orthogonal lifted from D6
ρ2022-20000-12-22-22-2000011-111-1-11-1    orthogonal lifted from D6
ρ2122-20000-1-2-222-22000011-11-111-1-1    orthogonal lifted from D6
ρ222220000-1-2-2-222-20000-1-1-111-11-11    orthogonal lifted from D6
ρ232220000-1-222-2-2-20000-1-1-1-11111-1    orthogonal lifted from D6
ρ2422-20000-1-22-2-222000011-1-1-1-1111    orthogonal lifted from D6
ρ254-4000004000000000000-4000000    symplectic lifted from 2- 1+4, Schur index 2
ρ264-400000-20000000000-2-32-32000000    complex faithful
ρ274-400000-200000000002-3-2-32000000    complex faithful

Smallest permutation representation of Q8.15D6
On 48 points
Generators in S48
(1 42 7 48)(2 43 8 37)(3 44 9 38)(4 45 10 39)(5 46 11 40)(6 47 12 41)(13 25 19 31)(14 26 20 32)(15 27 21 33)(16 28 22 34)(17 29 23 35)(18 30 24 36)
(1 26 7 32)(2 33 8 27)(3 28 9 34)(4 35 10 29)(5 30 11 36)(6 25 12 31)(13 41 19 47)(14 48 20 42)(15 43 21 37)(16 38 22 44)(17 45 23 39)(18 40 24 46)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19 7 13)(2 24 8 18)(3 17 9 23)(4 22 10 16)(5 15 11 21)(6 20 12 14)(25 48 31 42)(26 41 32 47)(27 46 33 40)(28 39 34 45)(29 44 35 38)(30 37 36 43)

G:=sub<Sym(48)| (1,42,7,48)(2,43,8,37)(3,44,9,38)(4,45,10,39)(5,46,11,40)(6,47,12,41)(13,25,19,31)(14,26,20,32)(15,27,21,33)(16,28,22,34)(17,29,23,35)(18,30,24,36), (1,26,7,32)(2,33,8,27)(3,28,9,34)(4,35,10,29)(5,30,11,36)(6,25,12,31)(13,41,19,47)(14,48,20,42)(15,43,21,37)(16,38,22,44)(17,45,23,39)(18,40,24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,24,8,18)(3,17,9,23)(4,22,10,16)(5,15,11,21)(6,20,12,14)(25,48,31,42)(26,41,32,47)(27,46,33,40)(28,39,34,45)(29,44,35,38)(30,37,36,43)>;

G:=Group( (1,42,7,48)(2,43,8,37)(3,44,9,38)(4,45,10,39)(5,46,11,40)(6,47,12,41)(13,25,19,31)(14,26,20,32)(15,27,21,33)(16,28,22,34)(17,29,23,35)(18,30,24,36), (1,26,7,32)(2,33,8,27)(3,28,9,34)(4,35,10,29)(5,30,11,36)(6,25,12,31)(13,41,19,47)(14,48,20,42)(15,43,21,37)(16,38,22,44)(17,45,23,39)(18,40,24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,24,8,18)(3,17,9,23)(4,22,10,16)(5,15,11,21)(6,20,12,14)(25,48,31,42)(26,41,32,47)(27,46,33,40)(28,39,34,45)(29,44,35,38)(30,37,36,43) );

G=PermutationGroup([[(1,42,7,48),(2,43,8,37),(3,44,9,38),(4,45,10,39),(5,46,11,40),(6,47,12,41),(13,25,19,31),(14,26,20,32),(15,27,21,33),(16,28,22,34),(17,29,23,35),(18,30,24,36)], [(1,26,7,32),(2,33,8,27),(3,28,9,34),(4,35,10,29),(5,30,11,36),(6,25,12,31),(13,41,19,47),(14,48,20,42),(15,43,21,37),(16,38,22,44),(17,45,23,39),(18,40,24,46)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19,7,13),(2,24,8,18),(3,17,9,23),(4,22,10,16),(5,15,11,21),(6,20,12,14),(25,48,31,42),(26,41,32,47),(27,46,33,40),(28,39,34,45),(29,44,35,38),(30,37,36,43)]])

Q8.15D6 is a maximal subgroup of
D12.4D4  D12.5D4  D12.14D4  D12.15D4  SD16:13D6  D12.30D4  C24.C23  SD16.D6  C6.C25  S3x2- 1+4  D12.39C23  Q8.15D18  SL2(F3).11D6  D12.33D6  D12.25D6  Dic6.26D6  C32:72- 1+4  C30.C24  C30.33C24  D12.29D10  Q8.15D30
Q8.15D6 is a maximal quotient of
C6.72+ 1+4  C6.82+ 1+4  C6.2- 1+4  C6.2+ 1+4  C6.52- 1+4  C6.62- 1+4  C42.122D6  Q8:6Dic6  C42.125D6  C42.126D6  Q8:6D12  C42.132D6  C42.133D6  C42.134D6  C6.152- 1+4  C6.162- 1+4  C6.172- 1+4  D12:22D4  Dic6:22D4  C6.202- 1+4  C6.212- 1+4  C6.222- 1+4  C6.232- 1+4  C6.242- 1+4  C6.252- 1+4  C6.592+ 1+4  C42.147D6  C42.150D6  C42.151D6  C42.154D6  C42.157D6  C42.158D6  Dic6:8Q8  C42.171D6  D12:12D4  D12:8Q8  C42.174D6  C42.176D6  C42.177D6  C42.178D6  C42.180D6  C6.422- 1+4  Q8xC3:D4  C6.442- 1+4  C6.452- 1+4  Q8.15D18  D12.33D6  D12.25D6  Dic6.26D6  C32:72- 1+4  C30.C24  C30.33C24  D12.29D10  Q8.15D30

Matrix representation of Q8.15D6 in GL4(F7) generated by

4366
0545
1043
2641
,
6364
5316
2263
5646
,
3624
2036
2122
1252
,
3002
3325
0244
2004
G:=sub<GL(4,GF(7))| [4,0,1,2,3,5,0,6,6,4,4,4,6,5,3,1],[6,5,2,5,3,3,2,6,6,1,6,4,4,6,3,6],[3,2,2,1,6,0,1,2,2,3,2,5,4,6,2,2],[3,3,0,2,0,3,2,0,0,2,4,0,2,5,4,4] >;

Q8.15D6 in GAP, Magma, Sage, TeX

Q_8._{15}D_6
% in TeX

G:=Group("Q8.15D6");
// GroupNames label

G:=SmallGroup(96,214);
// by ID

G=gap.SmallGroup(96,214);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,188,86,579,2309]);
// Polycyclic

G:=Group<a,b,c,d|a^4=1,b^2=c^6=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of Q8.15D6 in TeX

׿
x
:
Z
F
o
wr
Q
<