metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8.15D6, C6.10C24, D6.5C23, C3:12- 1+4, C12.24C23, D12.13C22, Dic3.6C23, Dic6.13C22, (C2xQ8):7S3, (C6xQ8):7C2, (S3xQ8):4C2, Q8o(C3:D4), C4oD12:6C2, (C2xC4).24D6, Q8:3S3:4C2, (C4xS3).5C22, C2.11(S3xC23), (C2xC6).68C23, C4.24(C22xS3), C3:D4.2C22, (C2xC12).48C22, C22.7(C22xS3), (C3xQ8).10C22, SmallGroup(96,214)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8.15D6
G = < a,b,c,d | a4=1, b2=c6=d2=a2, bab-1=dad-1=a-1, ac=ca, cbc-1=dbd-1=a2b, dcd-1=c5 >
Subgroups: 274 in 146 conjugacy classes, 85 normal (9 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, Q8, Dic3, C12, D6, C2xC6, C2xQ8, C2xQ8, C4oD4, Dic6, C4xS3, D12, C3:D4, C2xC12, C3xQ8, 2- 1+4, C4oD12, S3xQ8, Q8:3S3, C6xQ8, Q8.15D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22xS3, 2- 1+4, S3xC23, Q8.15D6
Character table of Q8.15D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ10 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ11 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | linear of order 2 |
ρ12 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ13 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ14 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ15 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ16 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ17 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ21 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ22 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ23 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ24 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ25 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from 2- 1+4, Schur index 2 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-3 | 2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-3 | -2√-3 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 42 7 48)(2 43 8 37)(3 44 9 38)(4 45 10 39)(5 46 11 40)(6 47 12 41)(13 25 19 31)(14 26 20 32)(15 27 21 33)(16 28 22 34)(17 29 23 35)(18 30 24 36)
(1 26 7 32)(2 33 8 27)(3 28 9 34)(4 35 10 29)(5 30 11 36)(6 25 12 31)(13 41 19 47)(14 48 20 42)(15 43 21 37)(16 38 22 44)(17 45 23 39)(18 40 24 46)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 19 7 13)(2 24 8 18)(3 17 9 23)(4 22 10 16)(5 15 11 21)(6 20 12 14)(25 48 31 42)(26 41 32 47)(27 46 33 40)(28 39 34 45)(29 44 35 38)(30 37 36 43)
G:=sub<Sym(48)| (1,42,7,48)(2,43,8,37)(3,44,9,38)(4,45,10,39)(5,46,11,40)(6,47,12,41)(13,25,19,31)(14,26,20,32)(15,27,21,33)(16,28,22,34)(17,29,23,35)(18,30,24,36), (1,26,7,32)(2,33,8,27)(3,28,9,34)(4,35,10,29)(5,30,11,36)(6,25,12,31)(13,41,19,47)(14,48,20,42)(15,43,21,37)(16,38,22,44)(17,45,23,39)(18,40,24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,24,8,18)(3,17,9,23)(4,22,10,16)(5,15,11,21)(6,20,12,14)(25,48,31,42)(26,41,32,47)(27,46,33,40)(28,39,34,45)(29,44,35,38)(30,37,36,43)>;
G:=Group( (1,42,7,48)(2,43,8,37)(3,44,9,38)(4,45,10,39)(5,46,11,40)(6,47,12,41)(13,25,19,31)(14,26,20,32)(15,27,21,33)(16,28,22,34)(17,29,23,35)(18,30,24,36), (1,26,7,32)(2,33,8,27)(3,28,9,34)(4,35,10,29)(5,30,11,36)(6,25,12,31)(13,41,19,47)(14,48,20,42)(15,43,21,37)(16,38,22,44)(17,45,23,39)(18,40,24,46), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,19,7,13)(2,24,8,18)(3,17,9,23)(4,22,10,16)(5,15,11,21)(6,20,12,14)(25,48,31,42)(26,41,32,47)(27,46,33,40)(28,39,34,45)(29,44,35,38)(30,37,36,43) );
G=PermutationGroup([[(1,42,7,48),(2,43,8,37),(3,44,9,38),(4,45,10,39),(5,46,11,40),(6,47,12,41),(13,25,19,31),(14,26,20,32),(15,27,21,33),(16,28,22,34),(17,29,23,35),(18,30,24,36)], [(1,26,7,32),(2,33,8,27),(3,28,9,34),(4,35,10,29),(5,30,11,36),(6,25,12,31),(13,41,19,47),(14,48,20,42),(15,43,21,37),(16,38,22,44),(17,45,23,39),(18,40,24,46)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,19,7,13),(2,24,8,18),(3,17,9,23),(4,22,10,16),(5,15,11,21),(6,20,12,14),(25,48,31,42),(26,41,32,47),(27,46,33,40),(28,39,34,45),(29,44,35,38),(30,37,36,43)]])
Q8.15D6 is a maximal subgroup of
D12.4D4 D12.5D4 D12.14D4 D12.15D4 SD16:13D6 D12.30D4 C24.C23 SD16.D6 C6.C25 S3x2- 1+4 D12.39C23 Q8.15D18 SL2(F3).11D6 D12.33D6 D12.25D6 Dic6.26D6 C32:72- 1+4 C30.C24 C30.33C24 D12.29D10 Q8.15D30
Q8.15D6 is a maximal quotient of
C6.72+ 1+4 C6.82+ 1+4 C6.2- 1+4 C6.2+ 1+4 C6.52- 1+4 C6.62- 1+4 C42.122D6 Q8:6Dic6 C42.125D6 C42.126D6 Q8:6D12 C42.132D6 C42.133D6 C42.134D6 C6.152- 1+4 C6.162- 1+4 C6.172- 1+4 D12:22D4 Dic6:22D4 C6.202- 1+4 C6.212- 1+4 C6.222- 1+4 C6.232- 1+4 C6.242- 1+4 C6.252- 1+4 C6.592+ 1+4 C42.147D6 C42.150D6 C42.151D6 C42.154D6 C42.157D6 C42.158D6 Dic6:8Q8 C42.171D6 D12:12D4 D12:8Q8 C42.174D6 C42.176D6 C42.177D6 C42.178D6 C42.180D6 C6.422- 1+4 Q8xC3:D4 C6.442- 1+4 C6.452- 1+4 Q8.15D18 D12.33D6 D12.25D6 Dic6.26D6 C32:72- 1+4 C30.C24 C30.33C24 D12.29D10 Q8.15D30
Matrix representation of Q8.15D6 ►in GL4(F7) generated by
4 | 3 | 6 | 6 |
0 | 5 | 4 | 5 |
1 | 0 | 4 | 3 |
2 | 6 | 4 | 1 |
6 | 3 | 6 | 4 |
5 | 3 | 1 | 6 |
2 | 2 | 6 | 3 |
5 | 6 | 4 | 6 |
3 | 6 | 2 | 4 |
2 | 0 | 3 | 6 |
2 | 1 | 2 | 2 |
1 | 2 | 5 | 2 |
3 | 0 | 0 | 2 |
3 | 3 | 2 | 5 |
0 | 2 | 4 | 4 |
2 | 0 | 0 | 4 |
G:=sub<GL(4,GF(7))| [4,0,1,2,3,5,0,6,6,4,4,4,6,5,3,1],[6,5,2,5,3,3,2,6,6,1,6,4,4,6,3,6],[3,2,2,1,6,0,1,2,2,3,2,5,4,6,2,2],[3,3,0,2,0,3,2,0,0,2,4,0,2,5,4,4] >;
Q8.15D6 in GAP, Magma, Sage, TeX
Q_8._{15}D_6
% in TeX
G:=Group("Q8.15D6");
// GroupNames label
G:=SmallGroup(96,214);
// by ID
G=gap.SmallGroup(96,214);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,103,188,86,579,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=1,b^2=c^6=d^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,a*c=c*a,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations
Export