Copied to
clipboard

G = 2+ 1+4:7S3order 192 = 26·3

2nd semidirect product of 2+ 1+4 and S3 acting via S3/C3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: 2+ 1+4:7S3, C3:3C2wrC22, (C2xC12):3D4, (C22xC6):4D4, (C2xD4).85D6, C23:2D6:19C2, C6.83C22wrC2, C23:2(C3:D4), (S3xC23):2C22, (C22xC6).6C23, (C6xD4).179C22, C23.7D6:10C2, C6.D4:7C22, C23.16(C22xS3), (C3x2+ 1+4):6C2, C2.17(C24:4S3), (C2xC4):2(C3:D4), (C2xC6).45(C2xD4), C22.17(C2xC3:D4), SmallGroup(192,803)

Series: Derived Chief Lower central Upper central

C1C22xC6 — 2+ 1+4:7S3
C1C3C6C2xC6C22xC6S3xC23C23:2D6 — 2+ 1+4:7S3
C3C6C22xC6 — 2+ 1+4:7S3
C1C2C232+ 1+4

Generators and relations for 2+ 1+4:7S3
 G = < a,b,c,d,e,f | a4=b2=d2=e3=f2=1, c2=a2, bab=a-1, ac=ca, ad=da, ae=ea, faf=a-1cd, fcf=bc=cb, fdf=bd=db, be=eb, bf=fb, dcd=a2c, ce=ec, de=ed, fef=e-1 >

Subgroups: 680 in 198 conjugacy classes, 43 normal (10 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2xC4, C2xC4, D4, Q8, C23, C23, C23, Dic3, C12, D6, C2xC6, C2xC6, C22:C4, C2xD4, C2xD4, C4oD4, C24, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC6, C22xC6, C22xC6, C23:C4, C22wrC2, 2+ 1+4, D6:C4, C6.D4, C2xC3:D4, C6xD4, C6xD4, C3xC4oD4, S3xC23, C2wrC22, C23.7D6, C23:2D6, C3x2+ 1+4, 2+ 1+4:7S3
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, C2xC3:D4, C2wrC22, C24:4S3, 2+ 1+4:7S3

Permutation representations of 2+ 1+4:7S3
On 24 points - transitive group 24T334
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(5 7)(10 12)(13 15)(18 20)(21 23)
(1 22 3 24)(2 23 4 21)(5 20 7 18)(6 17 8 19)(9 14 11 16)(10 15 12 13)
(1 24)(2 21)(3 22)(4 23)(5 20)(6 17)(7 18)(8 19)(9 14)(10 15)(11 16)(12 13)
(1 14 19)(2 15 20)(3 16 17)(4 13 18)(5 21 10)(6 22 11)(7 23 12)(8 24 9)
(5 12)(6 11)(7 10)(8 9)(13 18)(14 19)(15 20)(16 17)(21 23)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23), (1,22,3,24)(2,23,4,21)(5,20,7,18)(6,17,8,19)(9,14,11,16)(10,15,12,13), (1,24)(2,21)(3,22)(4,23)(5,20)(6,17)(7,18)(8,19)(9,14)(10,15)(11,16)(12,13), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (5,12)(6,11)(7,10)(8,9)(13,18)(14,19)(15,20)(16,17)(21,23)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(5,7)(10,12)(13,15)(18,20)(21,23), (1,22,3,24)(2,23,4,21)(5,20,7,18)(6,17,8,19)(9,14,11,16)(10,15,12,13), (1,24)(2,21)(3,22)(4,23)(5,20)(6,17)(7,18)(8,19)(9,14)(10,15)(11,16)(12,13), (1,14,19)(2,15,20)(3,16,17)(4,13,18)(5,21,10)(6,22,11)(7,23,12)(8,24,9), (5,12)(6,11)(7,10)(8,9)(13,18)(14,19)(15,20)(16,17)(21,23) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(5,7),(10,12),(13,15),(18,20),(21,23)], [(1,22,3,24),(2,23,4,21),(5,20,7,18),(6,17,8,19),(9,14,11,16),(10,15,12,13)], [(1,24),(2,21),(3,22),(4,23),(5,20),(6,17),(7,18),(8,19),(9,14),(10,15),(11,16),(12,13)], [(1,14,19),(2,15,20),(3,16,17),(4,13,18),(5,21,10),(6,22,11),(7,23,12),(8,24,9)], [(5,12),(6,11),(7,10),(8,9),(13,18),(14,19),(15,20),(16,17),(21,23)]])

G:=TransitiveGroup(24,334);

On 24 points - transitive group 24T349
Generators in S24
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 4)(2 3)(5 8)(6 7)(9 10)(11 12)(13 14)(15 16)(17 20)(18 19)(21 24)(22 23)
(1 23 3 21)(2 24 4 22)(5 19 7 17)(6 20 8 18)(9 13 11 15)(10 14 12 16)
(1 21)(2 22)(3 23)(4 24)(5 19)(6 20)(7 17)(8 18)(9 13)(10 14)(11 15)(12 16)
(1 19 14)(2 20 15)(3 17 16)(4 18 13)(5 10 21)(6 11 22)(7 12 23)(8 9 24)
(1 3)(2 4)(5 11)(6 10)(7 9)(8 12)(13 20)(14 17)(15 18)(16 19)(21 22)(23 24)

G:=sub<Sym(24)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23), (1,23,3,21)(2,24,4,22)(5,19,7,17)(6,20,8,18)(9,13,11,15)(10,14,12,16), (1,21)(2,22)(3,23)(4,24)(5,19)(6,20)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,3)(2,4)(5,11)(6,10)(7,9)(8,12)(13,20)(14,17)(15,18)(16,19)(21,22)(23,24)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,4)(2,3)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23), (1,23,3,21)(2,24,4,22)(5,19,7,17)(6,20,8,18)(9,13,11,15)(10,14,12,16), (1,21)(2,22)(3,23)(4,24)(5,19)(6,20)(7,17)(8,18)(9,13)(10,14)(11,15)(12,16), (1,19,14)(2,20,15)(3,17,16)(4,18,13)(5,10,21)(6,11,22)(7,12,23)(8,9,24), (1,3)(2,4)(5,11)(6,10)(7,9)(8,12)(13,20)(14,17)(15,18)(16,19)(21,22)(23,24) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,4),(2,3),(5,8),(6,7),(9,10),(11,12),(13,14),(15,16),(17,20),(18,19),(21,24),(22,23)], [(1,23,3,21),(2,24,4,22),(5,19,7,17),(6,20,8,18),(9,13,11,15),(10,14,12,16)], [(1,21),(2,22),(3,23),(4,24),(5,19),(6,20),(7,17),(8,18),(9,13),(10,14),(11,15),(12,16)], [(1,19,14),(2,20,15),(3,17,16),(4,18,13),(5,10,21),(6,11,22),(7,12,23),(8,9,24)], [(1,3),(2,4),(5,11),(6,10),(7,9),(8,12),(13,20),(14,17),(15,18),(16,19),(21,22),(23,24)]])

G:=TransitiveGroup(24,349);

33 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F6A6B···6J12A···12F
order1222222222344444466···612···12
size112224441212244424242424···44···4

33 irreducible representations

dim111122222248
type++++++++++
imageC1C2C2C2S3D4D4D6C3:D4C3:D4C2wrC222+ 1+4:7S3
kernel2+ 1+4:7S3C23.7D6C23:2D6C3x2+ 1+42+ 1+4C2xC12C22xC6C2xD4C2xC4C23C3C1
# reps133113336621

Matrix representation of 2+ 1+4:7S3 in GL6(F13)

100000
0120000
000100
0012000
0000012
000010
,
100000
010000
000100
001000
000001
000010
,
100000
010000
000001
000010
0001200
0012000
,
1200000
0120000
000001
000010
000100
001000
,
300000
090000
001000
000100
000010
000001
,
040000
1000000
0012000
0001200
0000012
0000120

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1,0,0,0],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0],[3,0,0,0,0,0,0,9,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,10,0,0,0,0,4,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,12,0] >;

2+ 1+4:7S3 in GAP, Magma, Sage, TeX

2_+^{1+4}\rtimes_7S_3
% in TeX

G:=Group("ES+(2,2):7S3");
// GroupNames label

G:=SmallGroup(192,803);
// by ID

G=gap.SmallGroup(192,803);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,254,570,438,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^4=b^2=d^2=e^3=f^2=1,c^2=a^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f=a^-1*c*d,f*c*f=b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=a^2*c,c*e=e*c,d*e=e*d,f*e*f=e^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<