extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4)⋊1D6 = D12⋊16D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):1D6 | 192,595 |
(C2×D4)⋊2D6 = C42⋊8D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 4 | (C2xD4):2D6 | 192,636 |
(C2×D4)⋊3D6 = D12⋊D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):3D6 | 192,715 |
(C2×D4)⋊4D6 = D12⋊18D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4):4D6 | 192,757 |
(C2×D4)⋊5D6 = C24⋊7D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):5D6 | 192,1148 |
(C2×D4)⋊6D6 = C24.45D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):6D6 | 192,1151 |
(C2×D4)⋊7D6 = C6.382+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):7D6 | 192,1166 |
(C2×D4)⋊8D6 = D12⋊20D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):8D6 | 192,1171 |
(C2×D4)⋊9D6 = C6.422+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):9D6 | 192,1172 |
(C2×D4)⋊10D6 = C6.462+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):10D6 | 192,1176 |
(C2×D4)⋊11D6 = C6.482+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):11D6 | 192,1179 |
(C2×D4)⋊12D6 = C42⋊28D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):12D6 | 192,1274 |
(C2×D4)⋊13D6 = C42⋊30D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4):13D6 | 192,1279 |
(C2×D4)⋊14D6 = D8⋊13D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4):14D6 | 192,1316 |
(C2×D4)⋊15D6 = D8⋊5D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8+ | (C2xD4):15D6 | 192,1333 |
(C2×D4)⋊16D6 = D12.32C23 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8+ | (C2xD4):16D6 | 192,1394 |
(C2×D4)⋊17D6 = S3×C22≀C2 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 24 | | (C2xD4):17D6 | 192,1147 |
(C2×D4)⋊18D6 = C24⋊8D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):18D6 | 192,1149 |
(C2×D4)⋊19D6 = C24.44D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):19D6 | 192,1150 |
(C2×D4)⋊20D6 = S3×C4⋊D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):20D6 | 192,1163 |
(C2×D4)⋊21D6 = C6.372+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):21D6 | 192,1164 |
(C2×D4)⋊22D6 = C4⋊C4⋊21D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):22D6 | 192,1165 |
(C2×D4)⋊23D6 = D12⋊19D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):23D6 | 192,1168 |
(C2×D4)⋊24D6 = C6.402+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):24D6 | 192,1169 |
(C2×D4)⋊25D6 = S3×C4⋊1D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):25D6 | 192,1273 |
(C2×D4)⋊26D6 = D12⋊11D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):26D6 | 192,1276 |
(C2×D4)⋊27D6 = C2×S3×D8 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):27D6 | 192,1313 |
(C2×D4)⋊28D6 = C2×D8⋊S3 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):28D6 | 192,1314 |
(C2×D4)⋊29D6 = S3×C8⋊C22 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4):29D6 | 192,1331 |
(C2×D4)⋊30D6 = D8⋊4D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | 8- | (C2xD4):30D6 | 192,1332 |
(C2×D4)⋊31D6 = S3×2+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4):31D6 | 192,1524 |
(C2×D4)⋊32D6 = D6.C24 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | 8- | (C2xD4):32D6 | 192,1525 |
(C2×D4)⋊33D6 = C22×D4⋊S3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4):33D6 | 192,1351 |
(C2×D4)⋊34D6 = C2×D12⋊6C22 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):34D6 | 192,1352 |
(C2×D4)⋊35D6 = C2×C23⋊2D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):35D6 | 192,1358 |
(C2×D4)⋊36D6 = C2×D6⋊3D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4):36D6 | 192,1359 |
(C2×D4)⋊37D6 = D4×C3⋊D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):37D6 | 192,1360 |
(C2×D4)⋊38D6 = C2×C23.14D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4):38D6 | 192,1361 |
(C2×D4)⋊39D6 = C2×C12⋊3D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4):39D6 | 192,1362 |
(C2×D4)⋊40D6 = C24⋊12D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):40D6 | 192,1363 |
(C2×D4)⋊41D6 = C2×D4⋊D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):41D6 | 192,1379 |
(C2×D4)⋊42D6 = C12.C24 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | 4 | (C2xD4):42D6 | 192,1381 |
(C2×D4)⋊43D6 = (C2×D4)⋊43D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):43D6 | 192,1387 |
(C2×D4)⋊44D6 = C6.1452+ 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):44D6 | 192,1388 |
(C2×D4)⋊45D6 = C6.1462+ 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):45D6 | 192,1389 |
(C2×D4)⋊46D6 = C2×D4⋊6D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4):46D6 | 192,1516 |
(C2×D4)⋊47D6 = C6.C25 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | 4 | (C2xD4):47D6 | 192,1523 |
(C2×D4)⋊48D6 = C22×D4⋊2S3 | φ: trivial image | 96 | | (C2xD4):48D6 | 192,1515 |
(C2×D4)⋊49D6 = C2×S3×C4○D4 | φ: trivial image | 48 | | (C2xD4):49D6 | 192,1520 |
(C2×D4)⋊50D6 = C2×D4○D12 | φ: trivial image | 48 | | (C2xD4):50D6 | 192,1521 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4).1D6 = C3⋊C2≀C4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).1D6 | 192,30 |
(C2×D4).2D6 = (C2×D4).D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).2D6 | 192,31 |
(C2×D4).3D6 = C23.D12 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).3D6 | 192,32 |
(C2×D4).4D6 = C23.2D12 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).4D6 | 192,33 |
(C2×D4).5D6 = C23.3D12 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).5D6 | 192,34 |
(C2×D4).6D6 = C23.4D12 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).6D6 | 192,35 |
(C2×D4).7D6 = C24⋊5Dic3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 4 | (C2xD4).7D6 | 192,95 |
(C2×D4).8D6 = (C22×C12)⋊C4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).8D6 | 192,98 |
(C2×D4).9D6 = C42⋊4Dic3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).9D6 | 192,100 |
(C2×D4).10D6 = C42⋊5Dic3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 4 | (C2xD4).10D6 | 192,104 |
(C2×D4).11D6 = C23⋊D12 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).11D6 | 192,300 |
(C2×D4).12D6 = C23.5D12 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).12D6 | 192,301 |
(C2×D4).13D6 = M4(2)⋊D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).13D6 | 192,305 |
(C2×D4).14D6 = D12⋊1D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).14D6 | 192,306 |
(C2×D4).15D6 = D12.2D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).15D6 | 192,307 |
(C2×D4).16D6 = D12.3D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8+ | (C2xD4).16D6 | 192,308 |
(C2×D4).17D6 = Dic3.SD16 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).17D6 | 192,319 |
(C2×D4).18D6 = Dic6⋊2D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).18D6 | 192,321 |
(C2×D4).19D6 = C4⋊C4.D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).19D6 | 192,323 |
(C2×D4).20D6 = C12⋊Q8⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).20D6 | 192,324 |
(C2×D4).21D6 = Dic6.D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).21D6 | 192,326 |
(C2×D4).22D6 = (C2×C8).200D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).22D6 | 192,327 |
(C2×D4).23D6 = D6.D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).23D6 | 192,333 |
(C2×D4).24D6 = D6⋊D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).24D6 | 192,334 |
(C2×D4).25D6 = D6.SD16 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).25D6 | 192,336 |
(C2×D4).26D6 = D6⋊SD16 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).26D6 | 192,337 |
(C2×D4).27D6 = D6⋊C8⋊11C2 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).27D6 | 192,338 |
(C2×D4).28D6 = C3⋊C8⋊1D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).28D6 | 192,339 |
(C2×D4).29D6 = C3⋊C8⋊D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).29D6 | 192,341 |
(C2×D4).30D6 = C24⋊1C4⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).30D6 | 192,343 |
(C2×D4).31D6 = D12⋊3D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).31D6 | 192,345 |
(C2×D4).32D6 = D12.D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).32D6 | 192,346 |
(C2×D4).33D6 = C24⋊6D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 4 | (C2xD4).33D6 | 192,591 |
(C2×D4).34D6 = (C2×C6).D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).34D6 | 192,592 |
(C2×D4).35D6 = C4⋊D4.S3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).35D6 | 192,593 |
(C2×D4).36D6 = C6.Q16⋊C2 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).36D6 | 192,594 |
(C2×D4).37D6 = D12⋊17D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).37D6 | 192,596 |
(C2×D4).38D6 = C3⋊C8⋊22D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).38D6 | 192,597 |
(C2×D4).39D6 = C4⋊D4⋊S3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).39D6 | 192,598 |
(C2×D4).40D6 = Dic6⋊17D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).40D6 | 192,599 |
(C2×D4).41D6 = C3⋊C8⋊23D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).41D6 | 192,600 |
(C2×D4).42D6 = C3⋊C8⋊5D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).42D6 | 192,601 |
(C2×D4).43D6 = C22⋊C4⋊D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).43D6 | 192,612 |
(C2×D4).44D6 = C42.61D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).44D6 | 192,613 |
(C2×D4).45D6 = C42.62D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).45D6 | 192,614 |
(C2×D4).46D6 = C42.213D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).46D6 | 192,615 |
(C2×D4).47D6 = D12.23D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).47D6 | 192,616 |
(C2×D4).48D6 = C42.64D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).48D6 | 192,617 |
(C2×D4).49D6 = C42.214D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).49D6 | 192,618 |
(C2×D4).50D6 = C42.65D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).50D6 | 192,619 |
(C2×D4).51D6 = C42⋊7D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).51D6 | 192,620 |
(C2×D4).52D6 = D12.14D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).52D6 | 192,621 |
(C2×D4).53D6 = C12.16D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).53D6 | 192,629 |
(C2×D4).54D6 = C42.72D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).54D6 | 192,630 |
(C2×D4).55D6 = C12⋊2D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).55D6 | 192,631 |
(C2×D4).56D6 = C12⋊D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).56D6 | 192,632 |
(C2×D4).57D6 = C42.74D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).57D6 | 192,633 |
(C2×D4).58D6 = Dic6⋊9D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).58D6 | 192,634 |
(C2×D4).59D6 = C12⋊4SD16 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).59D6 | 192,635 |
(C2×D4).60D6 = C24⋊5D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).60D6 | 192,710 |
(C2×D4).61D6 = (C6×D8).C2 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).61D6 | 192,712 |
(C2×D4).62D6 = C24⋊11D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).62D6 | 192,713 |
(C2×D4).63D6 = C24.22D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).63D6 | 192,714 |
(C2×D4).64D6 = D6⋊3D8 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).64D6 | 192,716 |
(C2×D4).65D6 = Dic6⋊D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).65D6 | 192,717 |
(C2×D4).66D6 = C24⋊12D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).66D6 | 192,718 |
(C2×D4).67D6 = C24.23D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).67D6 | 192,719 |
(C2×D4).68D6 = Dic3⋊5SD16 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).68D6 | 192,722 |
(C2×D4).69D6 = (C3×Q8).D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).69D6 | 192,725 |
(C2×D4).70D6 = C24.31D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).70D6 | 192,726 |
(C2×D4).71D6 = C24.43D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).71D6 | 192,727 |
(C2×D4).72D6 = D6⋊8SD16 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).72D6 | 192,729 |
(C2×D4).73D6 = C24⋊14D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).73D6 | 192,730 |
(C2×D4).74D6 = D12⋊7D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).74D6 | 192,731 |
(C2×D4).75D6 = C24⋊8D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).75D6 | 192,733 |
(C2×D4).76D6 = C24⋊15D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).76D6 | 192,734 |
(C2×D4).77D6 = C24⋊9D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).77D6 | 192,735 |
(C2×D4).78D6 = C24.44D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).78D6 | 192,736 |
(C2×D4).79D6 = M4(2).D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8+ | (C2xD4).79D6 | 192,758 |
(C2×D4).80D6 = M4(2).13D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).80D6 | 192,759 |
(C2×D4).81D6 = D12.38D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).81D6 | 192,760 |
(C2×D4).82D6 = 2+ 1+4⋊6S3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).82D6 | 192,800 |
(C2×D4).83D6 = 2+ 1+4.4S3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).83D6 | 192,801 |
(C2×D4).84D6 = 2+ 1+4.5S3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).84D6 | 192,802 |
(C2×D4).85D6 = 2+ 1+4⋊7S3 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).85D6 | 192,803 |
(C2×D4).86D6 = C24.46D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).86D6 | 192,1152 |
(C2×D4).87D6 = C24⋊9D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).87D6 | 192,1153 |
(C2×D4).88D6 = C24.47D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).88D6 | 192,1154 |
(C2×D4).89D6 = C6.322+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).89D6 | 192,1156 |
(C2×D4).90D6 = Dic6⋊20D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).90D6 | 192,1158 |
(C2×D4).91D6 = C6.712- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).91D6 | 192,1162 |
(C2×D4).92D6 = C6.722- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).92D6 | 192,1167 |
(C2×D4).93D6 = C6.442+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).93D6 | 192,1174 |
(C2×D4).94D6 = C6.452+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).94D6 | 192,1175 |
(C2×D4).95D6 = C6.472+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).95D6 | 192,1178 |
(C2×D4).96D6 = C6.492+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).96D6 | 192,1180 |
(C2×D4).97D6 = C6.812- 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).97D6 | 192,1210 |
(C2×D4).98D6 = C6.612+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).98D6 | 192,1216 |
(C2×D4).99D6 = C6.622+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).99D6 | 192,1218 |
(C2×D4).100D6 = C6.632+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).100D6 | 192,1219 |
(C2×D4).101D6 = C6.642+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).101D6 | 192,1220 |
(C2×D4).102D6 = C6.652+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).102D6 | 192,1221 |
(C2×D4).103D6 = C6.662+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).103D6 | 192,1222 |
(C2×D4).104D6 = C6.672+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).104D6 | 192,1223 |
(C2×D4).105D6 = C6.682+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).105D6 | 192,1225 |
(C2×D4).106D6 = C6.692+ 1+4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).106D6 | 192,1226 |
(C2×D4).107D6 = C42.137D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).107D6 | 192,1228 |
(C2×D4).108D6 = C42.138D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).108D6 | 192,1229 |
(C2×D4).109D6 = C42.140D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).109D6 | 192,1231 |
(C2×D4).110D6 = C42⋊22D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).110D6 | 192,1237 |
(C2×D4).111D6 = C42⋊23D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).111D6 | 192,1238 |
(C2×D4).112D6 = C42⋊24D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | | (C2xD4).112D6 | 192,1242 |
(C2×D4).113D6 = C42.145D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).113D6 | 192,1243 |
(C2×D4).114D6 = C42.166D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).114D6 | 192,1272 |
(C2×D4).115D6 = Dic6⋊11D4 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 96 | | (C2xD4).115D6 | 192,1277 |
(C2×D4).116D6 = SD16⋊13D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).116D6 | 192,1321 |
(C2×D4).117D6 = D8⋊6D6 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).117D6 | 192,1334 |
(C2×D4).118D6 = D12.33C23 | φ: D6/C3 → C22 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).118D6 | 192,1395 |
(C2×D4).119D6 = C23⋊C4⋊5S3 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).119D6 | 192,299 |
(C2×D4).120D6 = S3×C23⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).120D6 | 192,302 |
(C2×D4).121D6 = S3×C4.D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 24 | 8+ | (C2xD4).121D6 | 192,303 |
(C2×D4).122D6 = M4(2).19D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | 8- | (C2xD4).122D6 | 192,304 |
(C2×D4).123D6 = Dic3⋊4D8 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).123D6 | 192,315 |
(C2×D4).124D6 = D4.S3⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).124D6 | 192,316 |
(C2×D4).125D6 = Dic3⋊6SD16 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).125D6 | 192,317 |
(C2×D4).126D6 = Dic3.D8 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).126D6 | 192,318 |
(C2×D4).127D6 = D4⋊Dic6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).127D6 | 192,320 |
(C2×D4).128D6 = D4.Dic6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).128D6 | 192,322 |
(C2×D4).129D6 = D4.2Dic6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).129D6 | 192,325 |
(C2×D4).130D6 = S3×D4⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).130D6 | 192,328 |
(C2×D4).131D6 = C4⋊C4⋊19D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).131D6 | 192,329 |
(C2×D4).132D6 = D4⋊(C4×S3) | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).132D6 | 192,330 |
(C2×D4).133D6 = D4⋊2S3⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).133D6 | 192,331 |
(C2×D4).134D6 = D4⋊D12 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).134D6 | 192,332 |
(C2×D4).135D6 = D6⋊5SD16 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).135D6 | 192,335 |
(C2×D4).136D6 = D4⋊3D12 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).136D6 | 192,340 |
(C2×D4).137D6 = D4.D12 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).137D6 | 192,342 |
(C2×D4).138D6 = D4⋊S3⋊C4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).138D6 | 192,344 |
(C2×D4).139D6 = Dic3×D8 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).139D6 | 192,708 |
(C2×D4).140D6 = Dic3⋊D8 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).140D6 | 192,709 |
(C2×D4).141D6 = D8⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).141D6 | 192,711 |
(C2×D4).142D6 = Dic3×SD16 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).142D6 | 192,720 |
(C2×D4).143D6 = Dic3⋊3SD16 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).143D6 | 192,721 |
(C2×D4).144D6 = SD16⋊Dic3 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).144D6 | 192,723 |
(C2×D4).145D6 = (C3×D4).D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).145D6 | 192,724 |
(C2×D4).146D6 = D6⋊6SD16 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).146D6 | 192,728 |
(C2×D4).147D6 = Dic6.16D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).147D6 | 192,732 |
(C2×D4).148D6 = C24.67D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).148D6 | 192,1145 |
(C2×D4).149D6 = C24.43D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).149D6 | 192,1146 |
(C2×D4).150D6 = C12⋊(C4○D4) | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).150D6 | 192,1155 |
(C2×D4).151D6 = Dic6⋊19D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).151D6 | 192,1157 |
(C2×D4).152D6 = C4⋊C4.178D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).152D6 | 192,1159 |
(C2×D4).153D6 = C6.342+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).153D6 | 192,1160 |
(C2×D4).154D6 = C6.702- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).154D6 | 192,1161 |
(C2×D4).155D6 = C6.732- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).155D6 | 192,1170 |
(C2×D4).156D6 = C6.432+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).156D6 | 192,1173 |
(C2×D4).157D6 = C6.1152+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).157D6 | 192,1177 |
(C2×D4).158D6 = C6.792- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).158D6 | 192,1207 |
(C2×D4).159D6 = C4⋊C4.197D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).159D6 | 192,1208 |
(C2×D4).160D6 = C6.802- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).160D6 | 192,1209 |
(C2×D4).161D6 = S3×C22.D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).161D6 | 192,1211 |
(C2×D4).162D6 = C6.1202+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).162D6 | 192,1212 |
(C2×D4).163D6 = C6.1212+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).163D6 | 192,1213 |
(C2×D4).164D6 = C6.822- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).164D6 | 192,1214 |
(C2×D4).165D6 = C4⋊C4⋊28D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).165D6 | 192,1215 |
(C2×D4).166D6 = C6.1222+ 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).166D6 | 192,1217 |
(C2×D4).167D6 = C6.852- 1+4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).167D6 | 192,1224 |
(C2×D4).168D6 = C42.233D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).168D6 | 192,1227 |
(C2×D4).169D6 = C42.139D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).169D6 | 192,1230 |
(C2×D4).170D6 = S3×C4.4D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).170D6 | 192,1232 |
(C2×D4).171D6 = C42⋊20D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).171D6 | 192,1233 |
(C2×D4).172D6 = C42.141D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).172D6 | 192,1234 |
(C2×D4).173D6 = D12⋊10D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).173D6 | 192,1235 |
(C2×D4).174D6 = Dic6⋊10D4 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).174D6 | 192,1236 |
(C2×D4).175D6 = C42.234D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).175D6 | 192,1239 |
(C2×D4).176D6 = C42.143D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).176D6 | 192,1240 |
(C2×D4).177D6 = C42.144D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).177D6 | 192,1241 |
(C2×D4).178D6 = C42.238D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).178D6 | 192,1275 |
(C2×D4).179D6 = C42.168D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).179D6 | 192,1278 |
(C2×D4).180D6 = C2×D8⋊3S3 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).180D6 | 192,1315 |
(C2×D4).181D6 = C2×S3×SD16 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).181D6 | 192,1317 |
(C2×D4).182D6 = C2×Q8⋊3D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).182D6 | 192,1318 |
(C2×D4).183D6 = C2×D4.D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).183D6 | 192,1319 |
(C2×D4).184D6 = C2×Q8.7D6 | φ: D6/S3 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).184D6 | 192,1320 |
(C2×D4).185D6 = C12.50D8 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).185D6 | 192,566 |
(C2×D4).186D6 = C12.38SD16 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).186D6 | 192,567 |
(C2×D4).187D6 = D4.3Dic6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).187D6 | 192,568 |
(C2×D4).188D6 = C4×D4⋊S3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).188D6 | 192,572 |
(C2×D4).189D6 = C42.48D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).189D6 | 192,573 |
(C2×D4).190D6 = C12⋊7D8 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).190D6 | 192,574 |
(C2×D4).191D6 = D4.1D12 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).191D6 | 192,575 |
(C2×D4).192D6 = C4×D4.S3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).192D6 | 192,576 |
(C2×D4).193D6 = C42.51D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).193D6 | 192,577 |
(C2×D4).194D6 = D4.2D12 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).194D6 | 192,578 |
(C2×D4).195D6 = C2×D4⋊Dic3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).195D6 | 192,773 |
(C2×D4).196D6 = (C6×D4)⋊6C4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).196D6 | 192,774 |
(C2×D4).197D6 = C2×C12.D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).197D6 | 192,775 |
(C2×D4).198D6 = (C2×C6)⋊8D8 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).198D6 | 192,776 |
(C2×D4).199D6 = (C3×D4).31D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).199D6 | 192,777 |
(C2×D4).200D6 = C2×C23.7D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).200D6 | 192,778 |
(C2×D4).201D6 = C4○D4⋊3Dic3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).201D6 | 192,791 |
(C2×D4).202D6 = C4○D4⋊4Dic3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).202D6 | 192,792 |
(C2×D4).203D6 = (C6×D4).16C4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).203D6 | 192,796 |
(C2×D4).204D6 = (C3×D4)⋊14D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).204D6 | 192,797 |
(C2×D4).205D6 = (C3×D4).32D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).205D6 | 192,798 |
(C2×D4).206D6 = (C6×D4)⋊10C4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | 4 | (C2xD4).206D6 | 192,799 |
(C2×D4).207D6 = C42.102D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).207D6 | 192,1097 |
(C2×D4).208D6 = C42.104D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).208D6 | 192,1099 |
(C2×D4).209D6 = C42.105D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).209D6 | 192,1100 |
(C2×D4).210D6 = C42.106D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).210D6 | 192,1101 |
(C2×D4).211D6 = C42⋊14D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).211D6 | 192,1106 |
(C2×D4).212D6 = C42.228D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).212D6 | 192,1107 |
(C2×D4).213D6 = D12⋊23D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).213D6 | 192,1109 |
(C2×D4).214D6 = D12⋊24D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).214D6 | 192,1110 |
(C2×D4).215D6 = Dic6⋊23D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).215D6 | 192,1111 |
(C2×D4).216D6 = Dic6⋊24D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).216D6 | 192,1112 |
(C2×D4).217D6 = C42⋊18D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).217D6 | 192,1115 |
(C2×D4).218D6 = C42.229D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).218D6 | 192,1116 |
(C2×D4).219D6 = C42.113D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).219D6 | 192,1117 |
(C2×D4).220D6 = C42.114D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).220D6 | 192,1118 |
(C2×D4).221D6 = C42⋊19D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).221D6 | 192,1119 |
(C2×D4).222D6 = C42.115D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).222D6 | 192,1120 |
(C2×D4).223D6 = C42.116D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).223D6 | 192,1121 |
(C2×D4).224D6 = C42.117D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).224D6 | 192,1122 |
(C2×D4).225D6 = C42.118D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).225D6 | 192,1123 |
(C2×D4).226D6 = C42.119D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).226D6 | 192,1124 |
(C2×D4).227D6 = C22×D4.S3 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).227D6 | 192,1353 |
(C2×D4).228D6 = C2×C23.23D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).228D6 | 192,1355 |
(C2×D4).229D6 = C2×C23.12D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).229D6 | 192,1356 |
(C2×D4).230D6 = C24.52D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).230D6 | 192,1364 |
(C2×D4).231D6 = C24.53D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 48 | | (C2xD4).231D6 | 192,1365 |
(C2×D4).232D6 = C2×Q8.13D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).232D6 | 192,1380 |
(C2×D4).233D6 = C2×Q8.14D6 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).233D6 | 192,1382 |
(C2×D4).234D6 = C6.1042- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).234D6 | 192,1383 |
(C2×D4).235D6 = C6.1052- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).235D6 | 192,1384 |
(C2×D4).236D6 = C6.1072- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).236D6 | 192,1390 |
(C2×D4).237D6 = (C2×C12)⋊17D4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).237D6 | 192,1391 |
(C2×D4).238D6 = C6.1082- 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).238D6 | 192,1392 |
(C2×D4).239D6 = C6.1482+ 1+4 | φ: D6/C6 → C2 ⊆ Out C2×D4 | 96 | | (C2xD4).239D6 | 192,1393 |
(C2×D4).240D6 = C4×D4⋊2S3 | φ: trivial image | 96 | | (C2xD4).240D6 | 192,1095 |
(C2×D4).241D6 = D4×Dic6 | φ: trivial image | 96 | | (C2xD4).241D6 | 192,1096 |
(C2×D4).242D6 = D4⋊5Dic6 | φ: trivial image | 96 | | (C2xD4).242D6 | 192,1098 |
(C2×D4).243D6 = D4⋊6Dic6 | φ: trivial image | 96 | | (C2xD4).243D6 | 192,1102 |
(C2×D4).244D6 = C4×S3×D4 | φ: trivial image | 48 | | (C2xD4).244D6 | 192,1103 |
(C2×D4).245D6 = C42⋊13D6 | φ: trivial image | 48 | | (C2xD4).245D6 | 192,1104 |
(C2×D4).246D6 = C42.108D6 | φ: trivial image | 96 | | (C2xD4).246D6 | 192,1105 |
(C2×D4).247D6 = D4×D12 | φ: trivial image | 48 | | (C2xD4).247D6 | 192,1108 |
(C2×D4).248D6 = D4⋊5D12 | φ: trivial image | 48 | | (C2xD4).248D6 | 192,1113 |
(C2×D4).249D6 = D4⋊6D12 | φ: trivial image | 96 | | (C2xD4).249D6 | 192,1114 |
(C2×D4).250D6 = C2×D4×Dic3 | φ: trivial image | 96 | | (C2xD4).250D6 | 192,1354 |
(C2×D4).251D6 = C24.49D6 | φ: trivial image | 48 | | (C2xD4).251D6 | 192,1357 |
(C2×D4).252D6 = Dic3×C4○D4 | φ: trivial image | 96 | | (C2xD4).252D6 | 192,1385 |
(C2×D4).253D6 = C6.1442+ 1+4 | φ: trivial image | 96 | | (C2xD4).253D6 | 192,1386 |
(C2×D4).254D6 = C2×Q8○D12 | φ: trivial image | 96 | | (C2xD4).254D6 | 192,1522 |