extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1(C2xC8) = (C22xS3):C8 | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 48 | | (C2xC6).1(C2xC8) | 192,27 |
(C2xC6).2(C2xC8) = (C2xDic3):C8 | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).2(C2xC8) | 192,28 |
(C2xC6).3(C2xC8) = C8.25D12 | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).3(C2xC8) | 192,73 |
(C2xC6).4(C2xC8) = Dic3.5M4(2) | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 96 | | (C2xC6).4(C2xC8) | 192,277 |
(C2xC6).5(C2xC8) = S3xM5(2) | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).5(C2xC8) | 192,465 |
(C2xC6).6(C2xC8) = C16.12D6 | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 96 | 4 | (C2xC6).6(C2xC8) | 192,466 |
(C2xC6).7(C2xC8) = C24.78C23 | φ: C2xC8/C4 → C22 ⊆ Aut C2xC6 | 96 | 4 | (C2xC6).7(C2xC8) | 192,699 |
(C2xC6).8(C2xC8) = C3xD4oC16 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 96 | 2 | (C2xC6).8(C2xC8) | 192,937 |
(C2xC6).9(C2xC8) = Dic3xC16 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).9(C2xC8) | 192,59 |
(C2xC6).10(C2xC8) = Dic3:C16 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).10(C2xC8) | 192,60 |
(C2xC6).11(C2xC8) = C48:10C4 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).11(C2xC8) | 192,61 |
(C2xC6).12(C2xC8) = D6:C16 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).12(C2xC8) | 192,66 |
(C2xC6).13(C2xC8) = (C2xC24):5C4 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).13(C2xC8) | 192,109 |
(C2xC6).14(C2xC8) = S3xC2xC16 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).14(C2xC8) | 192,458 |
(C2xC6).15(C2xC8) = C2xD6.C8 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).15(C2xC8) | 192,459 |
(C2xC6).16(C2xC8) = D12.4C8 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 96 | 2 | (C2xC6).16(C2xC8) | 192,460 |
(C2xC6).17(C2xC8) = Dic3xC2xC8 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).17(C2xC8) | 192,657 |
(C2xC6).18(C2xC8) = C2xDic3:C8 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).18(C2xC8) | 192,658 |
(C2xC6).19(C2xC8) = C2xD6:C8 | φ: C2xC8/C8 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).19(C2xC8) | 192,667 |
(C2xC6).20(C2xC8) = C3xC23:C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).20(C2xC8) | 192,129 |
(C2xC6).21(C2xC8) = C3xC22.M4(2) | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).21(C2xC8) | 192,130 |
(C2xC6).22(C2xC8) = C3xC23.C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).22(C2xC8) | 192,155 |
(C2xC6).23(C2xC8) = C3xC42.12C4 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).23(C2xC8) | 192,864 |
(C2xC6).24(C2xC8) = C6xM5(2) | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).24(C2xC8) | 192,936 |
(C2xC6).25(C2xC8) = C4xC3:C16 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).25(C2xC8) | 192,19 |
(C2xC6).26(C2xC8) = C24.C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).26(C2xC8) | 192,20 |
(C2xC6).27(C2xC8) = C12:C16 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).27(C2xC8) | 192,21 |
(C2xC6).28(C2xC8) = (C2xC12):3C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).28(C2xC8) | 192,83 |
(C2xC6).29(C2xC8) = C24.3Dic3 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).29(C2xC8) | 192,84 |
(C2xC6).30(C2xC8) = (C2xC12):C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).30(C2xC8) | 192,87 |
(C2xC6).31(C2xC8) = C24.98D4 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).31(C2xC8) | 192,108 |
(C2xC6).32(C2xC8) = C24.D4 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 48 | 4 | (C2xC6).32(C2xC8) | 192,112 |
(C2xC6).33(C2xC8) = C2xC4xC3:C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).33(C2xC8) | 192,479 |
(C2xC6).34(C2xC8) = C2xC12:C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).34(C2xC8) | 192,482 |
(C2xC6).35(C2xC8) = C42.285D6 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).35(C2xC8) | 192,484 |
(C2xC6).36(C2xC8) = C22xC3:C16 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 192 | | (C2xC6).36(C2xC8) | 192,655 |
(C2xC6).37(C2xC8) = C2xC12.C8 | φ: C2xC8/C2xC4 → C2 ⊆ Aut C2xC6 | 96 | | (C2xC6).37(C2xC8) | 192,656 |
(C2xC6).38(C2xC8) = C3xC22.7C42 | central extension (φ=1) | 192 | | (C2xC6).38(C2xC8) | 192,142 |
(C2xC6).39(C2xC8) = C3xC16:5C4 | central extension (φ=1) | 192 | | (C2xC6).39(C2xC8) | 192,152 |
(C2xC6).40(C2xC8) = C3xC22:C16 | central extension (φ=1) | 96 | | (C2xC6).40(C2xC8) | 192,154 |
(C2xC6).41(C2xC8) = C3xC4:C16 | central extension (φ=1) | 192 | | (C2xC6).41(C2xC8) | 192,169 |
(C2xC6).42(C2xC8) = C6xC4:C8 | central extension (φ=1) | 192 | | (C2xC6).42(C2xC8) | 192,855 |