Extensions 1→N→G→Q→1 with N=C2xC6 and Q=C2xC8

Direct product G=NxQ with N=C2xC6 and Q=C2xC8
dρLabelID
C23xC24192C2^3xC24192,1454

Semidirect products G=N:Q with N=C2xC6 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
(C2xC6):1(C2xC8) = S3xC22:C8φ: C2xC8/C4C22 ⊆ Aut C2xC648(C2xC6):1(C2xC8)192,283
(C2xC6):2(C2xC8) = C3:D4:C8φ: C2xC8/C4C22 ⊆ Aut C2xC696(C2xC6):2(C2xC8)192,284
(C2xC6):3(C2xC8) = D4xC3:C8φ: C2xC8/C4C22 ⊆ Aut C2xC696(C2xC6):3(C2xC8)192,569
(C2xC6):4(C2xC8) = D4xC24φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6):4(C2xC8)192,867
(C2xC6):5(C2xC8) = C8xC3:D4φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6):5(C2xC8)192,668
(C2xC6):6(C2xC8) = S3xC22xC8φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6):6(C2xC8)192,1295
(C2xC6):7(C2xC8) = C6xC22:C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6):7(C2xC8)192,839
(C2xC6):8(C2xC8) = C2xC12.55D4φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6):8(C2xC8)192,765
(C2xC6):9(C2xC8) = C23xC3:C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6):9(C2xC8)192,1339

Non-split extensions G=N.Q with N=C2xC6 and Q=C2xC8
extensionφ:Q→Aut NdρLabelID
(C2xC6).1(C2xC8) = (C22xS3):C8φ: C2xC8/C4C22 ⊆ Aut C2xC648(C2xC6).1(C2xC8)192,27
(C2xC6).2(C2xC8) = (C2xDic3):C8φ: C2xC8/C4C22 ⊆ Aut C2xC696(C2xC6).2(C2xC8)192,28
(C2xC6).3(C2xC8) = C8.25D12φ: C2xC8/C4C22 ⊆ Aut C2xC6484(C2xC6).3(C2xC8)192,73
(C2xC6).4(C2xC8) = Dic3.5M4(2)φ: C2xC8/C4C22 ⊆ Aut C2xC696(C2xC6).4(C2xC8)192,277
(C2xC6).5(C2xC8) = S3xM5(2)φ: C2xC8/C4C22 ⊆ Aut C2xC6484(C2xC6).5(C2xC8)192,465
(C2xC6).6(C2xC8) = C16.12D6φ: C2xC8/C4C22 ⊆ Aut C2xC6964(C2xC6).6(C2xC8)192,466
(C2xC6).7(C2xC8) = C24.78C23φ: C2xC8/C4C22 ⊆ Aut C2xC6964(C2xC6).7(C2xC8)192,699
(C2xC6).8(C2xC8) = C3xD4oC16φ: C2xC8/C8C2 ⊆ Aut C2xC6962(C2xC6).8(C2xC8)192,937
(C2xC6).9(C2xC8) = Dic3xC16φ: C2xC8/C8C2 ⊆ Aut C2xC6192(C2xC6).9(C2xC8)192,59
(C2xC6).10(C2xC8) = Dic3:C16φ: C2xC8/C8C2 ⊆ Aut C2xC6192(C2xC6).10(C2xC8)192,60
(C2xC6).11(C2xC8) = C48:10C4φ: C2xC8/C8C2 ⊆ Aut C2xC6192(C2xC6).11(C2xC8)192,61
(C2xC6).12(C2xC8) = D6:C16φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6).12(C2xC8)192,66
(C2xC6).13(C2xC8) = (C2xC24):5C4φ: C2xC8/C8C2 ⊆ Aut C2xC6192(C2xC6).13(C2xC8)192,109
(C2xC6).14(C2xC8) = S3xC2xC16φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6).14(C2xC8)192,458
(C2xC6).15(C2xC8) = C2xD6.C8φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6).15(C2xC8)192,459
(C2xC6).16(C2xC8) = D12.4C8φ: C2xC8/C8C2 ⊆ Aut C2xC6962(C2xC6).16(C2xC8)192,460
(C2xC6).17(C2xC8) = Dic3xC2xC8φ: C2xC8/C8C2 ⊆ Aut C2xC6192(C2xC6).17(C2xC8)192,657
(C2xC6).18(C2xC8) = C2xDic3:C8φ: C2xC8/C8C2 ⊆ Aut C2xC6192(C2xC6).18(C2xC8)192,658
(C2xC6).19(C2xC8) = C2xD6:C8φ: C2xC8/C8C2 ⊆ Aut C2xC696(C2xC6).19(C2xC8)192,667
(C2xC6).20(C2xC8) = C3xC23:C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC648(C2xC6).20(C2xC8)192,129
(C2xC6).21(C2xC8) = C3xC22.M4(2)φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).21(C2xC8)192,130
(C2xC6).22(C2xC8) = C3xC23.C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6484(C2xC6).22(C2xC8)192,155
(C2xC6).23(C2xC8) = C3xC42.12C4φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).23(C2xC8)192,864
(C2xC6).24(C2xC8) = C6xM5(2)φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).24(C2xC8)192,936
(C2xC6).25(C2xC8) = C4xC3:C16φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).25(C2xC8)192,19
(C2xC6).26(C2xC8) = C24.C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).26(C2xC8)192,20
(C2xC6).27(C2xC8) = C12:C16φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).27(C2xC8)192,21
(C2xC6).28(C2xC8) = (C2xC12):3C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).28(C2xC8)192,83
(C2xC6).29(C2xC8) = C24.3Dic3φ: C2xC8/C2xC4C2 ⊆ Aut C2xC648(C2xC6).29(C2xC8)192,84
(C2xC6).30(C2xC8) = (C2xC12):C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).30(C2xC8)192,87
(C2xC6).31(C2xC8) = C24.98D4φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).31(C2xC8)192,108
(C2xC6).32(C2xC8) = C24.D4φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6484(C2xC6).32(C2xC8)192,112
(C2xC6).33(C2xC8) = C2xC4xC3:C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).33(C2xC8)192,479
(C2xC6).34(C2xC8) = C2xC12:C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).34(C2xC8)192,482
(C2xC6).35(C2xC8) = C42.285D6φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).35(C2xC8)192,484
(C2xC6).36(C2xC8) = C22xC3:C16φ: C2xC8/C2xC4C2 ⊆ Aut C2xC6192(C2xC6).36(C2xC8)192,655
(C2xC6).37(C2xC8) = C2xC12.C8φ: C2xC8/C2xC4C2 ⊆ Aut C2xC696(C2xC6).37(C2xC8)192,656
(C2xC6).38(C2xC8) = C3xC22.7C42central extension (φ=1)192(C2xC6).38(C2xC8)192,142
(C2xC6).39(C2xC8) = C3xC16:5C4central extension (φ=1)192(C2xC6).39(C2xC8)192,152
(C2xC6).40(C2xC8) = C3xC22:C16central extension (φ=1)96(C2xC6).40(C2xC8)192,154
(C2xC6).41(C2xC8) = C3xC4:C16central extension (φ=1)192(C2xC6).41(C2xC8)192,169
(C2xC6).42(C2xC8) = C6xC4:C8central extension (φ=1)192(C2xC6).42(C2xC8)192,855

׿
x
:
Z
F
o
wr
Q
<