Extensions 1→N→G→Q→1 with N=D4 and Q=C2×Dic3

Direct product G=N×Q with N=D4 and Q=C2×Dic3
dρLabelID
C2×D4×Dic396C2xD4xDic3192,1354

Semidirect products G=N:Q with N=D4 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
D41(C2×Dic3) = Dic3×D8φ: C2×Dic3/Dic3C2 ⊆ Out D496D4:1(C2xDic3)192,708
D42(C2×Dic3) = D8⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D496D4:2(C2xDic3)192,711
D43(C2×Dic3) = C2×D4⋊Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out D496D4:3(C2xDic3)192,773
D44(C2×Dic3) = C4○D43Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out D496D4:4(C2xDic3)192,791
D45(C2×Dic3) = C2×Q83Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out D448D4:5(C2xDic3)192,794
D46(C2×Dic3) = C24.49D6φ: trivial image48D4:6(C2xDic3)192,1357
D47(C2×Dic3) = Dic3×C4○D4φ: trivial image96D4:7(C2xDic3)192,1385
D48(C2×Dic3) = C6.1442+ 1+4φ: trivial image96D4:8(C2xDic3)192,1386

Non-split extensions G=N.Q with N=D4 and Q=C2×Dic3
extensionφ:Q→Out NdρLabelID
D4.1(C2×Dic3) = Dic3×SD16φ: C2×Dic3/Dic3C2 ⊆ Out D496D4.1(C2xDic3)192,720
D4.2(C2×Dic3) = SD16⋊Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D496D4.2(C2xDic3)192,723
D4.3(C2×Dic3) = D85Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D4484D4.3(C2xDic3)192,755
D4.4(C2×Dic3) = D84Dic3φ: C2×Dic3/Dic3C2 ⊆ Out D4484D4.4(C2xDic3)192,756
D4.5(C2×Dic3) = (C6×D4)⋊6C4φ: C2×Dic3/C2×C6C2 ⊆ Out D448D4.5(C2xDic3)192,774
D4.6(C2×Dic3) = C4○D44Dic3φ: C2×Dic3/C2×C6C2 ⊆ Out D496D4.6(C2xDic3)192,792
D4.7(C2×Dic3) = (C6×D4)⋊9C4φ: C2×Dic3/C2×C6C2 ⊆ Out D4484D4.7(C2xDic3)192,795
D4.8(C2×Dic3) = C2×D4.Dic3φ: trivial image96D4.8(C2xDic3)192,1377
D4.9(C2×Dic3) = C12.76C24φ: trivial image484D4.9(C2xDic3)192,1378

׿
×
𝔽