Copied to
clipboard

G = (C6xD4):6C4order 192 = 26·3

2nd semidirect product of C6xD4 and C4 acting via C4/C2=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C6xD4):6C4, (C2xD4):4Dic3, (C2xD4).196D6, (C2xC12).189D4, C12.203(C2xD4), D4.5(C2xDic3), (C22xD4).3S3, D4:Dic3:37C2, C12.80(C22xC4), C4:Dic3:68C22, (C22xC4).163D6, (C22xC6).195D4, C6.101(C8:C22), C12.31(C22:C4), (C2xC12).470C23, C2.5(D12:6C22), C4.8(C6.D4), (C6xD4).238C22, C23.91(C3:D4), C3:4(C23.37D4), C4.10(C22xDic3), C23.26D6:18C2, (C22xC12).195C22, C22.20(C6.D4), (D4xC2xC6).2C2, (C2xC3:C8):9C22, C4.89(C2xC3:D4), (C3xD4).22(C2xC4), (C2xC6).552(C2xD4), C6.72(C2xC22:C4), (C2xC12).116(C2xC4), (C2xC4.Dic3):17C2, (C2xC4).23(C2xDic3), C2.8(C2xC6.D4), C22.90(C2xC3:D4), (C2xC4).196(C3:D4), (C2xC4).557(C22xS3), (C2xC6).111(C22:C4), SmallGroup(192,774)

Series: Derived Chief Lower central Upper central

C1C12 — (C6xD4):6C4
C1C3C6C2xC6C2xC12C4:Dic3C23.26D6 — (C6xD4):6C4
C3C6C12 — (C6xD4):6C4
C1C22C22xC4C22xD4

Generators and relations for (C6xD4):6C4
 G = < a,b,c,d | a6=b4=c2=d4=1, ab=ba, ac=ca, dad-1=a-1b2, cbc=dbd-1=b-1, dcd-1=b-1c >

Subgroups: 456 in 190 conjugacy classes, 71 normal (23 characteristic)
C1, C2, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C6, C8, C2xC4, C2xC4, C2xC4, D4, D4, C23, C23, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C42, C22:C4, C4:C4, C2xC8, M4(2), C22xC4, C2xD4, C2xD4, C24, C3:C8, C2xDic3, C2xC12, C2xC12, C3xD4, C3xD4, C22xC6, C22xC6, D4:C4, C42:C2, C2xM4(2), C22xD4, C2xC3:C8, C4.Dic3, C4xDic3, C4:Dic3, C6.D4, C22xC12, C6xD4, C6xD4, C23xC6, C23.37D4, D4:Dic3, C2xC4.Dic3, C23.26D6, D4xC2xC6, (C6xD4):6C4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, Dic3, D6, C22:C4, C22xC4, C2xD4, C2xDic3, C3:D4, C22xS3, C2xC22:C4, C8:C22, C6.D4, C22xDic3, C2xC3:D4, C23.37D4, D12:6C22, C2xC6.D4, (C6xD4):6C4

Smallest permutation representation of (C6xD4):6C4
On 48 points
Generators in S48
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 13 6 18)(2 14 4 16)(3 15 5 17)(7 22 12 21)(8 23 10 19)(9 24 11 20)(25 47 28 44)(26 48 29 45)(27 43 30 46)(31 41 34 38)(32 42 35 39)(33 37 36 40)
(1 23)(2 24)(3 22)(4 20)(5 21)(6 19)(7 15)(8 13)(9 14)(10 18)(11 16)(12 17)(25 38)(26 39)(27 40)(28 41)(29 42)(30 37)(31 44)(32 45)(33 46)(34 47)(35 48)(36 43)
(1 27 23 33)(2 29 24 35)(3 25 22 31)(4 26 20 32)(5 28 21 34)(6 30 19 36)(7 41 17 47)(8 37 18 43)(9 39 16 45)(10 40 13 46)(11 42 14 48)(12 38 15 44)

G:=sub<Sym(48)| (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,13,6,18)(2,14,4,16)(3,15,5,17)(7,22,12,21)(8,23,10,19)(9,24,11,20)(25,47,28,44)(26,48,29,45)(27,43,30,46)(31,41,34,38)(32,42,35,39)(33,37,36,40), (1,23)(2,24)(3,22)(4,20)(5,21)(6,19)(7,15)(8,13)(9,14)(10,18)(11,16)(12,17)(25,38)(26,39)(27,40)(28,41)(29,42)(30,37)(31,44)(32,45)(33,46)(34,47)(35,48)(36,43), (1,27,23,33)(2,29,24,35)(3,25,22,31)(4,26,20,32)(5,28,21,34)(6,30,19,36)(7,41,17,47)(8,37,18,43)(9,39,16,45)(10,40,13,46)(11,42,14,48)(12,38,15,44)>;

G:=Group( (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,13,6,18)(2,14,4,16)(3,15,5,17)(7,22,12,21)(8,23,10,19)(9,24,11,20)(25,47,28,44)(26,48,29,45)(27,43,30,46)(31,41,34,38)(32,42,35,39)(33,37,36,40), (1,23)(2,24)(3,22)(4,20)(5,21)(6,19)(7,15)(8,13)(9,14)(10,18)(11,16)(12,17)(25,38)(26,39)(27,40)(28,41)(29,42)(30,37)(31,44)(32,45)(33,46)(34,47)(35,48)(36,43), (1,27,23,33)(2,29,24,35)(3,25,22,31)(4,26,20,32)(5,28,21,34)(6,30,19,36)(7,41,17,47)(8,37,18,43)(9,39,16,45)(10,40,13,46)(11,42,14,48)(12,38,15,44) );

G=PermutationGroup([[(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,13,6,18),(2,14,4,16),(3,15,5,17),(7,22,12,21),(8,23,10,19),(9,24,11,20),(25,47,28,44),(26,48,29,45),(27,43,30,46),(31,41,34,38),(32,42,35,39),(33,37,36,40)], [(1,23),(2,24),(3,22),(4,20),(5,21),(6,19),(7,15),(8,13),(9,14),(10,18),(11,16),(12,17),(25,38),(26,39),(27,40),(28,41),(29,42),(30,37),(31,44),(32,45),(33,46),(34,47),(35,48),(36,43)], [(1,27,23,33),(2,29,24,35),(3,25,22,31),(4,26,20,32),(5,28,21,34),(6,30,19,36),(7,41,17,47),(8,37,18,43),(9,39,16,45),(10,40,13,46),(11,42,14,48),(12,38,15,44)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H6A···6G6H···6O8A8B8C8D12A12B12C12D
order12222222223444444446···66···6888812121212
size111122444422222121212122···24···4121212124444

42 irreducible representations

dim1111112222222244
type+++++++++-++
imageC1C2C2C2C2C4S3D4D4D6Dic3D6C3:D4C3:D4C8:C22D12:6C22
kernel(C6xD4):6C4D4:Dic3C2xC4.Dic3C23.26D6D4xC2xC6C6xD4C22xD4C2xC12C22xC6C22xC4C2xD4C2xD4C2xC4C23C6C2
# reps1411181311426224

Matrix representation of (C6xD4):6C4 in GL6(F73)

6500000
090000
0072000
0007200
000010
000001
,
100000
010000
0012900
00107200
00007244
0000631
,
7200000
0720000
0012900
0007200
000010
00001072
,
0280000
1300000
000010
000001
001000
000100

G:=sub<GL(6,GF(73))| [65,0,0,0,0,0,0,9,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,10,0,0,0,0,29,72,0,0,0,0,0,0,72,63,0,0,0,0,44,1],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,29,72,0,0,0,0,0,0,1,10,0,0,0,0,0,72],[0,13,0,0,0,0,28,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0] >;

(C6xD4):6C4 in GAP, Magma, Sage, TeX

(C_6\times D_4)\rtimes_6C_4
% in TeX

G:=Group("(C6xD4):6C4");
// GroupNames label

G:=SmallGroup(192,774);
// by ID

G=gap.SmallGroup(192,774);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,232,422,387,1684,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=b^4=c^2=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1*b^2,c*b*c=d*b*d^-1=b^-1,d*c*d^-1=b^-1*c>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<