Extensions 1→N→G→Q→1 with N=Q8 and Q=C3×D4

Direct product G=N×Q with N=Q8 and Q=C3×D4
dρLabelID
C3×D4×Q896C3xD4xQ8192,1438

Semidirect products G=N:Q with N=Q8 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
Q8⋊(C3×D4) = D4×SL2(𝔽3)φ: C3×D4/D4C3 ⊆ Out Q832Q8:(C3xD4)192,1004
Q82(C3×D4) = C3×C4⋊SD16φ: C3×D4/C12C2 ⊆ Out Q896Q8:2(C3xD4)192,893
Q83(C3×D4) = C3×Q8⋊D4φ: C3×D4/C2×C6C2 ⊆ Out Q896Q8:3(C3xD4)192,881
Q84(C3×D4) = C3×D4⋊D4φ: C3×D4/C2×C6C2 ⊆ Out Q896Q8:4(C3xD4)192,882
Q85(C3×D4) = C3×D44D4φ: C3×D4/C2×C6C2 ⊆ Out Q8244Q8:5(C3xD4)192,886
Q86(C3×D4) = C3×Q85D4φ: trivial image96Q8:6(C3xD4)192,1437
Q87(C3×D4) = C3×Q86D4φ: trivial image96Q8:7(C3xD4)192,1439

Non-split extensions G=N.Q with N=Q8 and Q=C3×D4
extensionφ:Q→Out NdρLabelID
Q8.1(C3×D4) = SL2(𝔽3)⋊5D4φ: C3×D4/D4C3 ⊆ Out Q832Q8.1(C3xD4)192,1003
Q8.2(C3×D4) = SL2(𝔽3)⋊6D4φ: C3×D4/D4C3 ⊆ Out Q864Q8.2(C3xD4)192,1005
Q8.3(C3×D4) = Q16.A4φ: C3×D4/D4C3 ⊆ Out Q8484+Q8.3(C3xD4)192,1017
Q8.4(C3×D4) = SD16.A4φ: C3×D4/D4C3 ⊆ Out Q8324Q8.4(C3xD4)192,1018
Q8.5(C3×D4) = D8.A4φ: C3×D4/D4C3 ⊆ Out Q8324-Q8.5(C3xD4)192,1019
Q8.6(C3×D4) = C3×C42Q16φ: C3×D4/C12C2 ⊆ Out Q8192Q8.6(C3xD4)192,895
Q8.7(C3×D4) = C3×Q8.D4φ: C3×D4/C12C2 ⊆ Out Q896Q8.7(C3xD4)192,897
Q8.8(C3×D4) = C3×D4.3D4φ: C3×D4/C12C2 ⊆ Out Q8484Q8.8(C3xD4)192,904
Q8.9(C3×D4) = C3×D4.4D4φ: C3×D4/C12C2 ⊆ Out Q8484Q8.9(C3xD4)192,905
Q8.10(C3×D4) = C3×D4.5D4φ: C3×D4/C12C2 ⊆ Out Q8964Q8.10(C3xD4)192,906
Q8.11(C3×D4) = C3×C22⋊Q16φ: C3×D4/C2×C6C2 ⊆ Out Q896Q8.11(C3xD4)192,884
Q8.12(C3×D4) = C3×D4.7D4φ: C3×D4/C2×C6C2 ⊆ Out Q896Q8.12(C3xD4)192,885
Q8.13(C3×D4) = C3×D4.8D4φ: C3×D4/C2×C6C2 ⊆ Out Q8484Q8.13(C3xD4)192,887
Q8.14(C3×D4) = C3×D4.9D4φ: C3×D4/C2×C6C2 ⊆ Out Q8484Q8.14(C3xD4)192,888
Q8.15(C3×D4) = C3×D4.10D4φ: C3×D4/C2×C6C2 ⊆ Out Q8484Q8.15(C3xD4)192,889
Q8.16(C3×D4) = C3×D4○D8φ: trivial image484Q8.16(C3xD4)192,1465
Q8.17(C3×D4) = C3×D4○SD16φ: trivial image484Q8.17(C3xD4)192,1466
Q8.18(C3×D4) = C3×Q8○D8φ: trivial image964Q8.18(C3xD4)192,1467

׿
×
𝔽