Copied to
clipboard

G = Q16.A4order 192 = 26·3

The non-split extension by Q16 of A4 acting through Inn(Q16)

non-abelian, soluble

Aliases: Q16.A4, SL2(𝔽3).11D4, 2+ 1+4.2C6, D4○D8⋊C3, C8○D4.C6, C8.A43C2, C8.2(C2×A4), C2.9(D4×A4), Q8.A44C2, Q8.3(C3×D4), Q8.4(C2×A4), C4.4(C22×A4), C4.A4.15C22, C4○D4.1(C2×C6), SmallGroup(192,1017)

Series: Derived Chief Lower central Upper central

C1C2C4○D4 — Q16.A4
C1C2Q8C4○D4C4.A4Q8.A4 — Q16.A4
Q8C4○D4 — Q16.A4
C1C2C4Q16

Generators and relations for Q16.A4
 G = < a,b,c,d,e | a8=e3=1, b2=c2=d2=a4, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd-1=a4c, ece-1=a4cd, ede-1=c >

Subgroups: 291 in 73 conjugacy classes, 19 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C8, C8, C2×C4, D4, Q8, Q8, C23, C12, C2×C8, M4(2), D8, SD16, Q16, C2×D4, C4○D4, C4○D4, C24, SL2(𝔽3), C3×Q8, C8○D4, C2×D8, C4○D8, C8⋊C22, 2+ 1+4, C3×Q16, C4.A4, C4.A4, D4○D8, C8.A4, Q8.A4, Q16.A4
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, C3×D4, C2×A4, C22×A4, D4×A4, Q16.A4

Character table of Q16.A4

 class 12A2B2C2D3A3B4A4B4C4D6A6B8A8B8C12A12B12C12D12E12F24A24B24C24D
 size 116121244244644221288161616168888
ρ111111111111111111111111111    trivial
ρ21111-11111-1111-1-1-111-1-111-1-1-1-1    linear of order 2
ρ3111-1-1111-1-111111111-1-1-1-11111    linear of order 2
ρ4111-11111-11111-1-1-11111-1-1-1-1-1-1    linear of order 2
ρ5111-1-1ζ3ζ321-1-11ζ3ζ32111ζ3ζ32ζ6ζ65ζ6ζ65ζ32ζ32ζ3ζ3    linear of order 6
ρ6111-11ζ32ζ31-111ζ32ζ3-1-1-1ζ32ζ3ζ3ζ32ζ65ζ6ζ65ζ65ζ6ζ6    linear of order 6
ρ71111-1ζ3ζ3211-11ζ3ζ32-1-1-1ζ3ζ32ζ6ζ65ζ32ζ3ζ6ζ6ζ65ζ65    linear of order 6
ρ8111-1-1ζ32ζ31-1-11ζ32ζ3111ζ32ζ3ζ65ζ6ζ65ζ6ζ3ζ3ζ32ζ32    linear of order 6
ρ9111-11ζ3ζ321-111ζ3ζ32-1-1-1ζ3ζ32ζ32ζ3ζ6ζ65ζ6ζ6ζ65ζ65    linear of order 6
ρ101111-1ζ32ζ311-11ζ32ζ3-1-1-1ζ32ζ3ζ65ζ6ζ3ζ32ζ65ζ65ζ6ζ6    linear of order 6
ρ1111111ζ3ζ321111ζ3ζ32111ζ3ζ32ζ32ζ3ζ32ζ3ζ32ζ32ζ3ζ3    linear of order 3
ρ1211111ζ32ζ31111ζ32ζ3111ζ32ζ3ζ3ζ32ζ3ζ32ζ3ζ3ζ32ζ32    linear of order 3
ρ1322-20022-200222000-2-200000000    orthogonal lifted from D4
ρ1422-200-1+-3-1--3-2002-1+-3-1--30001--31+-300000000    complex lifted from C3×D4
ρ1522-200-1--3-1+-3-2002-1--3-1+-30001+-31--300000000    complex lifted from C3×D4
ρ1633-11-1003-33-100-3-310000000000    orthogonal lifted from C2×A4
ρ1733-1-1-100333-10033-10000000000    orthogonal lifted from A4
ρ1833-111003-3-3-10033-10000000000    orthogonal lifted from C2×A4
ρ1933-1-110033-3-100-3-310000000000    orthogonal lifted from C2×A4
ρ204-4000-2-2000022-22220000000-22-22    orthogonal faithful
ρ214-4000-2-200002222-2200000002-22-2    orthogonal faithful
ρ224-40001--31+-30000-1+-3-1--322-22000000083ζ328ζ3287ζ3285ζ3283ζ38ζ387ζ385ζ3    complex faithful
ρ234-40001--31+-30000-1+-3-1--3-2222000000087ζ3285ζ3283ζ328ζ3287ζ385ζ383ζ38ζ3    complex faithful
ρ244-40001+-31--30000-1--3-1+-322-22000000083ζ38ζ387ζ385ζ383ζ328ζ3287ζ3285ζ32    complex faithful
ρ254-40001+-31--30000-1--3-1+-3-2222000000087ζ385ζ383ζ38ζ387ζ3285ζ3283ζ328ζ32    complex faithful
ρ266620000-600-2000000000000000    orthogonal lifted from D4×A4

Smallest permutation representation of Q16.A4
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 14 6 10)(3 13 7 9)(4 12 8 16)(17 32 21 28)(18 31 22 27)(19 30 23 26)(20 29 24 25)(33 45 37 41)(34 44 38 48)(35 43 39 47)(36 42 40 46)
(1 3 5 7)(2 4 6 8)(9 15 13 11)(10 16 14 12)(17 26 21 30)(18 27 22 31)(19 28 23 32)(20 29 24 25)(33 45 37 41)(34 46 38 42)(35 47 39 43)(36 48 40 44)
(1 11 5 15)(2 12 6 16)(3 13 7 9)(4 14 8 10)(17 23 21 19)(18 24 22 20)(25 27 29 31)(26 28 30 32)(33 47 37 43)(34 48 38 44)(35 41 39 45)(36 42 40 46)
(1 26 43)(2 27 44)(3 28 45)(4 29 46)(5 30 47)(6 31 48)(7 32 41)(8 25 42)(9 21 33)(10 22 34)(11 23 35)(12 24 36)(13 17 37)(14 18 38)(15 19 39)(16 20 40)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,45,37,41)(34,44,38,48)(35,43,39,47)(36,42,40,46), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,26,21,30)(18,27,22,31)(19,28,23,32)(20,29,24,25)(33,45,37,41)(34,46,38,42)(35,47,39,43)(36,48,40,44), (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32)(33,47,37,43)(34,48,38,44)(35,41,39,45)(36,42,40,46), (1,26,43)(2,27,44)(3,28,45)(4,29,46)(5,30,47)(6,31,48)(7,32,41)(8,25,42)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(13,17,37)(14,18,38)(15,19,39)(16,20,40)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,14,6,10)(3,13,7,9)(4,12,8,16)(17,32,21,28)(18,31,22,27)(19,30,23,26)(20,29,24,25)(33,45,37,41)(34,44,38,48)(35,43,39,47)(36,42,40,46), (1,3,5,7)(2,4,6,8)(9,15,13,11)(10,16,14,12)(17,26,21,30)(18,27,22,31)(19,28,23,32)(20,29,24,25)(33,45,37,41)(34,46,38,42)(35,47,39,43)(36,48,40,44), (1,11,5,15)(2,12,6,16)(3,13,7,9)(4,14,8,10)(17,23,21,19)(18,24,22,20)(25,27,29,31)(26,28,30,32)(33,47,37,43)(34,48,38,44)(35,41,39,45)(36,42,40,46), (1,26,43)(2,27,44)(3,28,45)(4,29,46)(5,30,47)(6,31,48)(7,32,41)(8,25,42)(9,21,33)(10,22,34)(11,23,35)(12,24,36)(13,17,37)(14,18,38)(15,19,39)(16,20,40) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,14,6,10),(3,13,7,9),(4,12,8,16),(17,32,21,28),(18,31,22,27),(19,30,23,26),(20,29,24,25),(33,45,37,41),(34,44,38,48),(35,43,39,47),(36,42,40,46)], [(1,3,5,7),(2,4,6,8),(9,15,13,11),(10,16,14,12),(17,26,21,30),(18,27,22,31),(19,28,23,32),(20,29,24,25),(33,45,37,41),(34,46,38,42),(35,47,39,43),(36,48,40,44)], [(1,11,5,15),(2,12,6,16),(3,13,7,9),(4,14,8,10),(17,23,21,19),(18,24,22,20),(25,27,29,31),(26,28,30,32),(33,47,37,43),(34,48,38,44),(35,41,39,45),(36,42,40,46)], [(1,26,43),(2,27,44),(3,28,45),(4,29,46),(5,30,47),(6,31,48),(7,32,41),(8,25,42),(9,21,33),(10,22,34),(11,23,35),(12,24,36),(13,17,37),(14,18,38),(15,19,39),(16,20,40)]])

Matrix representation of Q16.A4 in GL4(𝔽7) generated by

4536
4244
3301
2562
,
6530
0062
4456
2563
,
6205
5043
2543
6644
,
3663
4032
1605
3324
,
6263
6332
0020
5511
G:=sub<GL(4,GF(7))| [4,4,3,2,5,2,3,5,3,4,0,6,6,4,1,2],[6,0,4,2,5,0,4,5,3,6,5,6,0,2,6,3],[6,5,2,6,2,0,5,6,0,4,4,4,5,3,3,4],[3,4,1,3,6,0,6,3,6,3,0,2,3,2,5,4],[6,6,0,5,2,3,0,5,6,3,2,1,3,2,0,1] >;

Q16.A4 in GAP, Magma, Sage, TeX

Q_{16}.A_4
% in TeX

G:=Group("Q16.A4");
// GroupNames label

G:=SmallGroup(192,1017);
// by ID

G=gap.SmallGroup(192,1017);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,672,197,680,3027,1522,248,438,172,775,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=e^3=1,b^2=c^2=d^2=a^4,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^4*c,e*c*e^-1=a^4*c*d,e*d*e^-1=c>;
// generators/relations

Export

Character table of Q16.A4 in TeX

׿
×
𝔽