Copied to
clipboard

G = SL2(𝔽3)⋊5D4order 192 = 26·3

1st semidirect product of SL2(𝔽3) and D4 acting through Inn(SL2(𝔽3))

non-abelian, soluble

Aliases: SL2(𝔽3)⋊5D4, Q85D4⋊C3, (C4×Q8)⋊2C6, C2.3(D4×A4), Q8.1(C3×D4), C22⋊C4.2A4, C222(C4.A4), C2.3(D4.A4), C23.26(C2×A4), (C22×Q8).3C6, (C4×SL2(𝔽3))⋊5C2, C22.22(C22×A4), (C22×SL2(𝔽3))⋊1C2, (C2×SL2(𝔽3)).27C22, (C2×C4○D4)⋊1C6, (C2×C4.A4)⋊2C2, (C2×C4).4(C2×A4), C2.3(C2×C4.A4), (C2×Q8).38(C2×C6), SmallGroup(192,1003)

Series: Derived Chief Lower central Upper central

C1C2C2×Q8 — SL2(𝔽3)⋊5D4
C1C2Q8C2×Q8C2×SL2(𝔽3)C22×SL2(𝔽3) — SL2(𝔽3)⋊5D4
Q8C2×Q8 — SL2(𝔽3)⋊5D4
C1C22C22⋊C4

Generators and relations for SL2(𝔽3)⋊5D4
 G = < a,b,c,d,e | a4=c3=d4=e2=1, b2=a2, bab-1=dad-1=a-1, cac-1=b, ae=ea, cbc-1=ab, bd=db, be=eb, dcd-1=a-1c, ce=ec, ede=d-1 >

Subgroups: 315 in 90 conjugacy classes, 23 normal (21 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, C6, C2×C4, C2×C4, D4, Q8, Q8, C23, C23, C12, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, C4○D4, SL2(𝔽3), C2×C12, C22×C6, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C4.4D4, C22×Q8, C2×C4○D4, C3×C22⋊C4, C2×SL2(𝔽3), C2×SL2(𝔽3), C4.A4, Q85D4, C4×SL2(𝔽3), C22×SL2(𝔽3), C2×C4.A4, SL2(𝔽3)⋊5D4
Quotients: C1, C2, C3, C22, C6, D4, A4, C2×C6, C3×D4, C2×A4, C4.A4, C22×A4, D4×A4, C2×C4.A4, D4.A4, SL2(𝔽3)⋊5D4

Smallest permutation representation of SL2(𝔽3)⋊5D4
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 7 3 5)(2 6 4 8)(9 15 11 13)(10 14 12 16)(17 23 19 21)(18 22 20 24)(25 31 27 29)(26 30 28 32)
(2 6 7)(4 8 5)(10 14 15)(12 16 13)(18 22 23)(20 24 21)(26 30 31)(28 32 29)
(1 23 9 31)(2 22 10 30)(3 21 11 29)(4 24 12 32)(5 17 13 25)(6 20 14 28)(7 19 15 27)(8 18 16 26)
(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,3,5)(2,6,4,8)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32), (2,6,7)(4,8,5)(10,14,15)(12,16,13)(18,22,23)(20,24,21)(26,30,31)(28,32,29), (1,23,9,31)(2,22,10,30)(3,21,11,29)(4,24,12,32)(5,17,13,25)(6,20,14,28)(7,19,15,27)(8,18,16,26), (17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,7,3,5)(2,6,4,8)(9,15,11,13)(10,14,12,16)(17,23,19,21)(18,22,20,24)(25,31,27,29)(26,30,28,32), (2,6,7)(4,8,5)(10,14,15)(12,16,13)(18,22,23)(20,24,21)(26,30,31)(28,32,29), (1,23,9,31)(2,22,10,30)(3,21,11,29)(4,24,12,32)(5,17,13,25)(6,20,14,28)(7,19,15,27)(8,18,16,26), (17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,7,3,5),(2,6,4,8),(9,15,11,13),(10,14,12,16),(17,23,19,21),(18,22,20,24),(25,31,27,29),(26,30,28,32)], [(2,6,7),(4,8,5),(10,14,15),(12,16,13),(18,22,23),(20,24,21),(26,30,31),(28,32,29)], [(1,23,9,31),(2,22,10,30),(3,21,11,29),(4,24,12,32),(5,17,13,25),(6,20,14,28),(7,19,15,27),(8,18,16,26)], [(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)]])

35 conjugacy classes

class 1 2A2B2C2D2E2F3A3B4A4B4C4D4E4F4G4H6A···6F6G6H6I6J12A···12H
order122222233444444446···6666612···12
size111122124422226612124···488888···8

35 irreducible representations

dim11111111222333446
type++++++++-+
imageC1C2C2C2C3C6C6C6D4C3×D4C4.A4A4C2×A4C2×A4D4.A4D4.A4D4×A4
kernelSL2(𝔽3)⋊5D4C4×SL2(𝔽3)C22×SL2(𝔽3)C2×C4.A4Q85D4C4×Q8C22×Q8C2×C4○D4SL2(𝔽3)Q8C22C22⋊C4C2×C4C23C2C2C2
# reps111122221212121121

Matrix representation of SL2(𝔽3)⋊5D4 in GL4(𝔽13) generated by

1000
0100
00012
0010
,
1000
0100
0034
00410
,
1000
0100
0010
00109
,
11100
11200
00116
0062
,
1000
11200
0010
0001
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,12,0],[1,0,0,0,0,1,0,0,0,0,3,4,0,0,4,10],[1,0,0,0,0,1,0,0,0,0,1,10,0,0,0,9],[1,1,0,0,11,12,0,0,0,0,11,6,0,0,6,2],[1,1,0,0,0,12,0,0,0,0,1,0,0,0,0,1] >;

SL2(𝔽3)⋊5D4 in GAP, Magma, Sage, TeX

{\rm SL}_2({\mathbb F}_3)\rtimes_5D_4
% in TeX

G:=Group("SL(2,3):5D4");
// GroupNames label

G:=SmallGroup(192,1003);
// by ID

G=gap.SmallGroup(192,1003);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,2,-2,197,680,438,172,775,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=c^3=d^4=e^2=1,b^2=a^2,b*a*b^-1=d*a*d^-1=a^-1,c*a*c^-1=b,a*e=e*a,c*b*c^-1=a*b,b*d=d*b,b*e=e*b,d*c*d^-1=a^-1*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽