Extensions 1→N→G→Q→1 with N=D4 and Q=C2×A4

Direct product G=N×Q with N=D4 and Q=C2×A4
dρLabelID
C2×D4×A424C2xD4xA4192,1497

Semidirect products G=N:Q with N=D4 and Q=C2×A4
extensionφ:Q→Out NdρLabelID
D4⋊(C2×A4) = A4×D8φ: C2×A4/A4C2 ⊆ Out D4246+D4:(C2xA4)192,1014
D42(C2×A4) = A4×C4○D4φ: trivial image246D4:2(C2xA4)192,1501

Non-split extensions G=N.Q with N=D4 and Q=C2×A4
extensionφ:Q→Out NdρLabelID
D4.1(C2×A4) = A4×SD16φ: C2×A4/A4C2 ⊆ Out D4246D4.1(C2xA4)192,1015
D4.2(C2×A4) = SD16.A4φ: C2×A4/A4C2 ⊆ Out D4324D4.2(C2xA4)192,1018
D4.3(C2×A4) = D8.A4φ: C2×A4/A4C2 ⊆ Out D4324-D4.3(C2xA4)192,1019
D4.4(C2×A4) = C2×D4.A4φ: trivial image32D4.4(C2xA4)192,1503
D4.5(C2×A4) = 2- 1+43C6φ: trivial image324D4.5(C2xA4)192,1504

׿
×
𝔽