Extensions 1→N→G→Q→1 with N=C8×Dic3 and Q=C2

Direct product G=N×Q with N=C8×Dic3 and Q=C2
dρLabelID
Dic3×C2×C8192Dic3xC2xC8192,657

Semidirect products G=N:Q with N=C8×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×Dic3)⋊1C2 = D247C4φ: C2/C1C2 ⊆ Out C8×Dic3484(C8xDic3):1C2192,454
(C8×Dic3)⋊2C2 = D85Dic3φ: C2/C1C2 ⊆ Out C8×Dic3484(C8xDic3):2C2192,755
(C8×Dic3)⋊3C2 = Dic35D8φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):3C2192,431
(C8×Dic3)⋊4C2 = Dic3×D8φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):4C2192,708
(C8×Dic3)⋊5C2 = C245D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):5C2192,710
(C8×Dic3)⋊6C2 = C24.22D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):6C2192,714
(C8×Dic3)⋊7C2 = C24.28D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):7C2192,750
(C8×Dic3)⋊8C2 = Dic38SD16φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):8C2192,411
(C8×Dic3)⋊9C2 = Dic3×SD16φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):9C2192,720
(C8×Dic3)⋊10C2 = C24.43D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):10C2192,727
(C8×Dic3)⋊11C2 = C2415D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):11C2192,734
(C8×Dic3)⋊12C2 = D6.C42φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):12C2192,248
(C8×Dic3)⋊13C2 = Dic3.5M4(2)φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):13C2192,277
(C8×Dic3)⋊14C2 = C24⋊C4⋊C2φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):14C2192,279
(C8×Dic3)⋊15C2 = C3⋊D4⋊C8φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):15C2192,284
(C8×Dic3)⋊16C2 = Dic3⋊M4(2)φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):16C2192,288
(C8×Dic3)⋊17C2 = Dic34D8φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):17C2192,315
(C8×Dic3)⋊18C2 = Dic36SD16φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):18C2192,317
(C8×Dic3)⋊19C2 = Dic3.SD16φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):19C2192,319
(C8×Dic3)⋊20C2 = (C2×C8).200D6φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):20C2192,327
(C8×Dic3)⋊21C2 = Dic37SD16φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):21C2192,347
(C8×Dic3)⋊22C2 = Q8⋊C4⋊S3φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):22C2192,359
(C8×Dic3)⋊23C2 = C42.200D6φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):23C2192,392
(C8×Dic3)⋊24C2 = C42.31D6φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):24C2192,399
(C8×Dic3)⋊25C2 = C12.12C42φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):25C2192,660
(C8×Dic3)⋊26C2 = C8×C3⋊D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):26C2192,668
(C8×Dic3)⋊27C2 = Dic35M4(2)φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):27C2192,266
(C8×Dic3)⋊28C2 = D6.4C42φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):28C2192,267
(C8×Dic3)⋊29C2 = Dic3×M4(2)φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):29C2192,676
(C8×Dic3)⋊30C2 = C12.7C42φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):30C2192,681
(C8×Dic3)⋊31C2 = C2421D4φ: C2/C1C2 ⊆ Out C8×Dic396(C8xDic3):31C2192,687
(C8×Dic3)⋊32C2 = C24.100D4φ: C2/C1C2 ⊆ Out C8×Dic3484(C8xDic3):32C2192,703
(C8×Dic3)⋊33C2 = S3×C4×C8φ: trivial image96(C8xDic3):33C2192,243

Non-split extensions G=N.Q with N=C8×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C8×Dic3).1C2 = Dic35Q16φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).1C2192,432
(C8×Dic3).2C2 = C242Q8φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).2C2192,433
(C8×Dic3).3C2 = C8.6Dic6φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).3C2192,437
(C8×Dic3).4C2 = Dic3×Q16φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).4C2192,740
(C8×Dic3).5C2 = C24.26D4φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).5C2192,742
(C8×Dic3).6C2 = C245Q8φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).6C2192,414
(C8×Dic3).7C2 = C8.8Dic6φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).7C2192,417
(C8×Dic3).8C2 = Dic3⋊C16φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).8C2192,60
(C8×Dic3).9C2 = C4810C4φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).9C2192,61
(C8×Dic3).10C2 = C8×Dic6φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).10C2192,237
(C8×Dic3).11C2 = Dic34Q16φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).11C2192,349
(C8×Dic3).12C2 = Dic3.1Q16φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).12C2192,351
(C8×Dic3).13C2 = C42.27D6φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).13C2192,387
(C8×Dic3).14C2 = Dic6⋊C8φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).14C2192,389
(C8×Dic3).15C2 = C24.97D4φ: C2/C1C2 ⊆ Out C8×Dic3484(C8xDic3).15C2192,70
(C8×Dic3).16C2 = C24⋊Q8φ: C2/C1C2 ⊆ Out C8×Dic3192(C8xDic3).16C2192,260
(C8×Dic3).17C2 = Dic3×C16φ: trivial image192(C8xDic3).17C2192,59

׿
×
𝔽