Copied to
clipboard

G = Dic34D8order 192 = 26·3

1st semidirect product of Dic3 and D8 acting through Inn(Dic3)

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic34D8, C32(C4×D8), D4⋊S31C4, D41(C4×S3), C2.1(S3×D8), D121(C2×C4), C6.30(C4×D4), C6.18(C2×D8), C4⋊C4.128D6, (D4×Dic3)⋊1C2, C6.Q161C2, (C2×C8).197D6, D4⋊C421S3, Dic35D41C2, (C8×Dic3)⋊17C2, (C2×D4).123D6, C6.36(C4○D8), C2.D2419C2, C12.1(C22×C4), C22.65(S3×D4), (C6×D4).17C22, C12.142(C4○D4), C4.43(D42S3), (C2×C12).196C23, (C2×C24).218C22, (C2×Dic3).199D4, C2.1(Q8.7D6), (C2×D12).43C22, C4⋊Dic3.56C22, C2.14(Dic34D4), (C4×Dic3).220C22, C4.1(S3×C2×C4), C3⋊C811(C2×C4), (C3×D4)⋊1(C2×C4), (C2×D4⋊S3).1C2, (C2×C6).209(C2×D4), (C3×C4⋊C4).1C22, (C3×D4⋊C4)⋊20C2, (C2×C3⋊C8).207C22, (C2×C4).303(C22×S3), SmallGroup(192,315)

Series: Derived Chief Lower central Upper central

C1C12 — Dic34D8
C1C3C6C12C2×C12C4×Dic3D4×Dic3 — Dic34D8
C3C6C12 — Dic34D8
C1C22C2×C4D4⋊C4

Generators and relations for Dic34D8
 G = < a,b,c,d | a6=c8=d2=1, b2=a3, bab-1=cac-1=a-1, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 408 in 134 conjugacy classes, 51 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C2×D4, C2×D4, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C22×S3, C22×C6, C4×C8, D4⋊C4, D4⋊C4, C2.D8, C4×D4, C2×D8, C2×C3⋊C8, C4×Dic3, C4⋊Dic3, D6⋊C4, D4⋊S3, C6.D4, C3×C4⋊C4, C2×C24, S3×C2×C4, C2×D12, C22×Dic3, C6×D4, C4×D8, C6.Q16, C8×Dic3, C2.D24, C3×D4⋊C4, Dic35D4, C2×D4⋊S3, D4×Dic3, Dic34D8
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, D8, C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, C2×D8, C4○D8, S3×C2×C4, S3×D4, D42S3, C4×D8, Dic34D4, S3×D8, Q8.7D6, Dic34D8

Smallest permutation representation of Dic34D8
On 96 points
Generators in S96
(1 40 24 65 84 91)(2 92 85 66 17 33)(3 34 18 67 86 93)(4 94 87 68 19 35)(5 36 20 69 88 95)(6 96 81 70 21 37)(7 38 22 71 82 89)(8 90 83 72 23 39)(9 55 59 77 28 45)(10 46 29 78 60 56)(11 49 61 79 30 47)(12 48 31 80 62 50)(13 51 63 73 32 41)(14 42 25 74 64 52)(15 53 57 75 26 43)(16 44 27 76 58 54)
(1 52 65 25)(2 53 66 26)(3 54 67 27)(4 55 68 28)(5 56 69 29)(6 49 70 30)(7 50 71 31)(8 51 72 32)(9 19 77 94)(10 20 78 95)(11 21 79 96)(12 22 80 89)(13 23 73 90)(14 24 74 91)(15 17 75 92)(16 18 76 93)(33 57 85 43)(34 58 86 44)(35 59 87 45)(36 60 88 46)(37 61 81 47)(38 62 82 48)(39 63 83 41)(40 64 84 42)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 4)(2 3)(5 8)(6 7)(9 64)(10 63)(11 62)(12 61)(13 60)(14 59)(15 58)(16 57)(17 86)(18 85)(19 84)(20 83)(21 82)(22 81)(23 88)(24 87)(25 28)(26 27)(29 32)(30 31)(33 93)(34 92)(35 91)(36 90)(37 89)(38 96)(39 95)(40 94)(41 78)(42 77)(43 76)(44 75)(45 74)(46 73)(47 80)(48 79)(49 50)(51 56)(52 55)(53 54)(65 68)(66 67)(69 72)(70 71)

G:=sub<Sym(96)| (1,40,24,65,84,91)(2,92,85,66,17,33)(3,34,18,67,86,93)(4,94,87,68,19,35)(5,36,20,69,88,95)(6,96,81,70,21,37)(7,38,22,71,82,89)(8,90,83,72,23,39)(9,55,59,77,28,45)(10,46,29,78,60,56)(11,49,61,79,30,47)(12,48,31,80,62,50)(13,51,63,73,32,41)(14,42,25,74,64,52)(15,53,57,75,26,43)(16,44,27,76,58,54), (1,52,65,25)(2,53,66,26)(3,54,67,27)(4,55,68,28)(5,56,69,29)(6,49,70,30)(7,50,71,31)(8,51,72,32)(9,19,77,94)(10,20,78,95)(11,21,79,96)(12,22,80,89)(13,23,73,90)(14,24,74,91)(15,17,75,92)(16,18,76,93)(33,57,85,43)(34,58,86,44)(35,59,87,45)(36,60,88,46)(37,61,81,47)(38,62,82,48)(39,63,83,41)(40,64,84,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,4)(2,3)(5,8)(6,7)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,86)(18,85)(19,84)(20,83)(21,82)(22,81)(23,88)(24,87)(25,28)(26,27)(29,32)(30,31)(33,93)(34,92)(35,91)(36,90)(37,89)(38,96)(39,95)(40,94)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,80)(48,79)(49,50)(51,56)(52,55)(53,54)(65,68)(66,67)(69,72)(70,71)>;

G:=Group( (1,40,24,65,84,91)(2,92,85,66,17,33)(3,34,18,67,86,93)(4,94,87,68,19,35)(5,36,20,69,88,95)(6,96,81,70,21,37)(7,38,22,71,82,89)(8,90,83,72,23,39)(9,55,59,77,28,45)(10,46,29,78,60,56)(11,49,61,79,30,47)(12,48,31,80,62,50)(13,51,63,73,32,41)(14,42,25,74,64,52)(15,53,57,75,26,43)(16,44,27,76,58,54), (1,52,65,25)(2,53,66,26)(3,54,67,27)(4,55,68,28)(5,56,69,29)(6,49,70,30)(7,50,71,31)(8,51,72,32)(9,19,77,94)(10,20,78,95)(11,21,79,96)(12,22,80,89)(13,23,73,90)(14,24,74,91)(15,17,75,92)(16,18,76,93)(33,57,85,43)(34,58,86,44)(35,59,87,45)(36,60,88,46)(37,61,81,47)(38,62,82,48)(39,63,83,41)(40,64,84,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,4)(2,3)(5,8)(6,7)(9,64)(10,63)(11,62)(12,61)(13,60)(14,59)(15,58)(16,57)(17,86)(18,85)(19,84)(20,83)(21,82)(22,81)(23,88)(24,87)(25,28)(26,27)(29,32)(30,31)(33,93)(34,92)(35,91)(36,90)(37,89)(38,96)(39,95)(40,94)(41,78)(42,77)(43,76)(44,75)(45,74)(46,73)(47,80)(48,79)(49,50)(51,56)(52,55)(53,54)(65,68)(66,67)(69,72)(70,71) );

G=PermutationGroup([[(1,40,24,65,84,91),(2,92,85,66,17,33),(3,34,18,67,86,93),(4,94,87,68,19,35),(5,36,20,69,88,95),(6,96,81,70,21,37),(7,38,22,71,82,89),(8,90,83,72,23,39),(9,55,59,77,28,45),(10,46,29,78,60,56),(11,49,61,79,30,47),(12,48,31,80,62,50),(13,51,63,73,32,41),(14,42,25,74,64,52),(15,53,57,75,26,43),(16,44,27,76,58,54)], [(1,52,65,25),(2,53,66,26),(3,54,67,27),(4,55,68,28),(5,56,69,29),(6,49,70,30),(7,50,71,31),(8,51,72,32),(9,19,77,94),(10,20,78,95),(11,21,79,96),(12,22,80,89),(13,23,73,90),(14,24,74,91),(15,17,75,92),(16,18,76,93),(33,57,85,43),(34,58,86,44),(35,59,87,45),(36,60,88,46),(37,61,81,47),(38,62,82,48),(39,63,83,41),(40,64,84,42)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,4),(2,3),(5,8),(6,7),(9,64),(10,63),(11,62),(12,61),(13,60),(14,59),(15,58),(16,57),(17,86),(18,85),(19,84),(20,83),(21,82),(22,81),(23,88),(24,87),(25,28),(26,27),(29,32),(30,31),(33,93),(34,92),(35,91),(36,90),(37,89),(38,96),(39,95),(40,94),(41,78),(42,77),(43,76),(44,75),(45,74),(46,73),(47,80),(48,79),(49,50),(51,56),(52,55),(53,54),(65,68),(66,67),(69,72),(70,71)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222222344444444444466666888888881212121224242424
size1111441212222333344661212222882222666644884444

42 irreducible representations

dim1111111112222222224444
type++++++++++++++-++
imageC1C2C2C2C2C2C2C2C4S3D4D6D6D6D8C4○D4C4×S3C4○D8D42S3S3×D4S3×D8Q8.7D6
kernelDic34D8C6.Q16C8×Dic3C2.D24C3×D4⋊C4Dic35D4C2×D4⋊S3D4×Dic3D4⋊S3D4⋊C4C2×Dic3C4⋊C4C2×C8C2×D4Dic3C12D4C6C4C22C2C2
# reps1111111181211142441122

Matrix representation of Dic34D8 in GL4(𝔽73) generated by

17200
1000
0010
0001
,
04600
46000
0010
0001
,
07200
72000
00032
005732
,
72000
07200
00041
00570
G:=sub<GL(4,GF(73))| [1,1,0,0,72,0,0,0,0,0,1,0,0,0,0,1],[0,46,0,0,46,0,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,72,0,0,0,0,0,0,57,0,0,32,32],[72,0,0,0,0,72,0,0,0,0,0,57,0,0,41,0] >;

Dic34D8 in GAP, Magma, Sage, TeX

{\rm Dic}_3\rtimes_4D_8
% in TeX

G:=Group("Dic3:4D8");
// GroupNames label

G:=SmallGroup(192,315);
// by ID

G=gap.SmallGroup(192,315);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,135,100,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^8=d^2=1,b^2=a^3,b*a*b^-1=c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽