Extensions 1→N→G→Q→1 with N=C3xD8 and Q=C4

Direct product G=NxQ with N=C3xD8 and Q=C4
dρLabelID
C12xD896C12xD8192,870

Semidirect products G=N:Q with N=C3xD8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xD8):1C4 = D8:1Dic3φ: C4/C2C2 ⊆ Out C3xD896(C3xD8):1C4192,121
(C3xD8):2C4 = Dic3xD8φ: C4/C2C2 ⊆ Out C3xD896(C3xD8):2C4192,708
(C3xD8):3C4 = D8:5Dic3φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8):3C4192,755
(C3xD8):4C4 = D8:2Dic3φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8):4C4192,125
(C3xD8):5C4 = D8:Dic3φ: C4/C2C2 ⊆ Out C3xD896(C3xD8):5C4192,711
(C3xD8):6C4 = D8:4Dic3φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8):6C4192,756
(C3xD8):7C4 = C3xC2.D16φ: C4/C2C2 ⊆ Out C3xD896(C3xD8):7C4192,163
(C3xD8):8C4 = C3xD8:2C4φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8):8C4192,166
(C3xD8):9C4 = C3xD8:C4φ: C4/C2C2 ⊆ Out C3xD896(C3xD8):9C4192,875
(C3xD8):10C4 = C3xC8.26D4φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8):10C4192,877
(C3xD8):11C4 = C3xC8oD8φ: trivial image482(C3xD8):11C4192,876

Non-split extensions G=N.Q with N=C3xD8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xD8).1C4 = C24.41D4φ: C4/C2C2 ⊆ Out C3xD8964(C3xD8).1C4192,126
(C3xD8).2C4 = D8.Dic3φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8).2C4192,122
(C3xD8).3C4 = C3xD8.C4φ: C4/C2C2 ⊆ Out C3xD8962(C3xD8).3C4192,165
(C3xD8).4C4 = C3xM5(2):C2φ: C4/C2C2 ⊆ Out C3xD8484(C3xD8).4C4192,167

׿
x
:
Z
F
o
wr
Q
<