Extensions 1→N→G→Q→1 with N=C3×D8 and Q=C4

Direct product G=N×Q with N=C3×D8 and Q=C4
dρLabelID
C12×D896C12xD8192,870

Semidirect products G=N:Q with N=C3×D8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D8)⋊1C4 = D81Dic3φ: C4/C2C2 ⊆ Out C3×D896(C3xD8):1C4192,121
(C3×D8)⋊2C4 = Dic3×D8φ: C4/C2C2 ⊆ Out C3×D896(C3xD8):2C4192,708
(C3×D8)⋊3C4 = D85Dic3φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8):3C4192,755
(C3×D8)⋊4C4 = D82Dic3φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8):4C4192,125
(C3×D8)⋊5C4 = D8⋊Dic3φ: C4/C2C2 ⊆ Out C3×D896(C3xD8):5C4192,711
(C3×D8)⋊6C4 = D84Dic3φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8):6C4192,756
(C3×D8)⋊7C4 = C3×C2.D16φ: C4/C2C2 ⊆ Out C3×D896(C3xD8):7C4192,163
(C3×D8)⋊8C4 = C3×D82C4φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8):8C4192,166
(C3×D8)⋊9C4 = C3×D8⋊C4φ: C4/C2C2 ⊆ Out C3×D896(C3xD8):9C4192,875
(C3×D8)⋊10C4 = C3×C8.26D4φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8):10C4192,877
(C3×D8)⋊11C4 = C3×C8○D8φ: trivial image482(C3xD8):11C4192,876

Non-split extensions G=N.Q with N=C3×D8 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3×D8).1C4 = C24.41D4φ: C4/C2C2 ⊆ Out C3×D8964(C3xD8).1C4192,126
(C3×D8).2C4 = D8.Dic3φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8).2C4192,122
(C3×D8).3C4 = C3×D8.C4φ: C4/C2C2 ⊆ Out C3×D8962(C3xD8).3C4192,165
(C3×D8).4C4 = C3×M5(2)⋊C2φ: C4/C2C2 ⊆ Out C3×D8484(C3xD8).4C4192,167

׿
×
𝔽