Copied to
clipboard

G = C3xC8oD8order 192 = 26·3

Direct product of C3 and C8oD8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3xC8oD8, D8:5C12, Q16:5C12, C24.77D4, SD16:3C12, C4wrC2:7C6, (C4xC8):10C6, (C4xC24):21C2, C8oD4:10C6, (C3xD8):11C4, C4oD8.5C6, C4.82(C6xD4), C8.30(C3xD4), C8.C4:8C6, C24.67(C2xC4), C8.11(C2xC12), (C3xQ16):11C4, (C3xSD16):7C4, D4.3(C2xC12), C6.120(C4xD4), C2.18(D4xC12), Q8.8(C2xC12), C12.487(C2xD4), C42.73(C2xC6), C4.15(C22xC12), (C4xC12).358C22, C12.160(C22xC4), (C2xC24).411C22, (C2xC12).910C23, M4(2).11(C2xC6), (C3xM4(2)).45C22, (C3xC4wrC2):15C2, (C3xC8oD4):15C2, (C2xC8).101(C2xC6), C4oD4.15(C2xC6), (C3xC4oD8).10C2, (C3xD4).20(C2xC4), (C3xQ8).21(C2xC4), (C3xC8.C4):17C2, C22.1(C3xC4oD4), (C2xC6).49(C4oD4), (C2xC4).85(C22xC6), (C3xC4oD4).53C22, SmallGroup(192,876)

Series: Derived Chief Lower central Upper central

C1C4 — C3xC8oD8
C1C2C4C2xC4C2xC12C3xM4(2)C3xC4wrC2 — C3xC8oD8
C1C2C4 — C3xC8oD8
C1C24C2xC24 — C3xC8oD8

Generators and relations for C3xC8oD8
 G = < a,b,c,d | a3=b8=d2=1, c4=b4, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=b4c3 >

Subgroups: 154 in 106 conjugacy classes, 66 normal (38 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, C12, C12, C2xC6, C2xC6, C42, C2xC8, C2xC8, M4(2), M4(2), D8, SD16, Q16, C4oD4, C24, C24, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C4xC8, C4wrC2, C8.C4, C8oD4, C4oD8, C4xC12, C2xC24, C2xC24, C3xM4(2), C3xM4(2), C3xD8, C3xSD16, C3xQ16, C3xC4oD4, C8oD8, C4xC24, C3xC4wrC2, C3xC8.C4, C3xC8oD4, C3xC4oD8, C3xC8oD8
Quotients: C1, C2, C3, C4, C22, C6, C2xC4, D4, C23, C12, C2xC6, C22xC4, C2xD4, C4oD4, C2xC12, C3xD4, C22xC6, C4xD4, C22xC12, C6xD4, C3xC4oD4, C8oD8, D4xC12, C3xC8oD8

Smallest permutation representation of C3xC8oD8
On 48 points
Generators in S48
(1 27 21)(2 28 22)(3 29 23)(4 30 24)(5 31 17)(6 32 18)(7 25 19)(8 26 20)(9 36 41)(10 37 42)(11 38 43)(12 39 44)(13 40 45)(14 33 46)(15 34 47)(16 35 48)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 6 3 8 5 2 7 4)(9 12 15 10 13 16 11 14)(17 22 19 24 21 18 23 20)(25 30 27 32 29 26 31 28)(33 36 39 34 37 40 35 38)(41 44 47 42 45 48 43 46)
(1 47)(2 48)(3 41)(4 42)(5 43)(6 44)(7 45)(8 46)(9 29)(10 30)(11 31)(12 32)(13 25)(14 26)(15 27)(16 28)(17 38)(18 39)(19 40)(20 33)(21 34)(22 35)(23 36)(24 37)

G:=sub<Sym(48)| (1,27,21)(2,28,22)(3,29,23)(4,30,24)(5,31,17)(6,32,18)(7,25,19)(8,26,20)(9,36,41)(10,37,42)(11,38,43)(12,39,44)(13,40,45)(14,33,46)(15,34,47)(16,35,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,6,3,8,5,2,7,4)(9,12,15,10,13,16,11,14)(17,22,19,24,21,18,23,20)(25,30,27,32,29,26,31,28)(33,36,39,34,37,40,35,38)(41,44,47,42,45,48,43,46), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37)>;

G:=Group( (1,27,21)(2,28,22)(3,29,23)(4,30,24)(5,31,17)(6,32,18)(7,25,19)(8,26,20)(9,36,41)(10,37,42)(11,38,43)(12,39,44)(13,40,45)(14,33,46)(15,34,47)(16,35,48), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,6,3,8,5,2,7,4)(9,12,15,10,13,16,11,14)(17,22,19,24,21,18,23,20)(25,30,27,32,29,26,31,28)(33,36,39,34,37,40,35,38)(41,44,47,42,45,48,43,46), (1,47)(2,48)(3,41)(4,42)(5,43)(6,44)(7,45)(8,46)(9,29)(10,30)(11,31)(12,32)(13,25)(14,26)(15,27)(16,28)(17,38)(18,39)(19,40)(20,33)(21,34)(22,35)(23,36)(24,37) );

G=PermutationGroup([[(1,27,21),(2,28,22),(3,29,23),(4,30,24),(5,31,17),(6,32,18),(7,25,19),(8,26,20),(9,36,41),(10,37,42),(11,38,43),(12,39,44),(13,40,45),(14,33,46),(15,34,47),(16,35,48)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,6,3,8,5,2,7,4),(9,12,15,10,13,16,11,14),(17,22,19,24,21,18,23,20),(25,30,27,32,29,26,31,28),(33,36,39,34,37,40,35,38),(41,44,47,42,45,48,43,46)], [(1,47),(2,48),(3,41),(4,42),(5,43),(6,44),(7,45),(8,46),(9,29),(10,30),(11,31),(12,32),(13,25),(14,26),(15,27),(16,28),(17,38),(18,39),(19,40),(20,33),(21,34),(22,35),(23,36),(24,37)]])

84 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C···4G4H4I6A6B6C6D6E6F6G6H8A8B8C8D8E···8J8K8L8M8N12A12B12C12D12E···12N12O12P12Q12R24A···24H24I···24T24U···24AB
order1222233444···4446666666688888···888881212121212···121212121224···2424···2424···24
size1124411112···2441122444411112···2444411112···244441···12···24···4

84 irreducible representations

dim111111111111111111222222
type+++++++
imageC1C2C2C2C2C2C3C4C4C4C6C6C6C6C6C12C12C12D4C4oD4C3xD4C3xC4oD4C8oD8C3xC8oD8
kernelC3xC8oD8C4xC24C3xC4wrC2C3xC8.C4C3xC8oD4C3xC4oD8C8oD8C3xD8C3xSD16C3xQ16C4xC8C4wrC2C8.C4C8oD4C4oD8D8SD16Q16C24C2xC6C8C22C3C1
# reps1121212242242424842244816

Matrix representation of C3xC8oD8 in GL3(F73) generated by

6400
010
001
,
100
0100
0010
,
7200
0630
0051
,
100
001
010
G:=sub<GL(3,GF(73))| [64,0,0,0,1,0,0,0,1],[1,0,0,0,10,0,0,0,10],[72,0,0,0,63,0,0,0,51],[1,0,0,0,0,1,0,1,0] >;

C3xC8oD8 in GAP, Magma, Sage, TeX

C_3\times C_8\circ D_8
% in TeX

G:=Group("C3xC8oD8");
// GroupNames label

G:=SmallGroup(192,876);
// by ID

G=gap.SmallGroup(192,876);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,336,365,268,4204,2111,172,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=d^2=1,c^4=b^4,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^4*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<