Extensions 1→N→G→Q→1 with N=C3xQ16 and Q=C4

Direct product G=NxQ with N=C3xQ16 and Q=C4
dρLabelID
C12xQ16192C12xQ16192,872

Semidirect products G=N:Q with N=C3xQ16 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xQ16):1C4 = C6.5Q32φ: C4/C2C2 ⊆ Out C3xQ16192(C3xQ16):1C4192,123
(C3xQ16):2C4 = Dic3xQ16φ: C4/C2C2 ⊆ Out C3xQ16192(C3xQ16):2C4192,740
(C3xQ16):3C4 = D8:5Dic3φ: C4/C2C2 ⊆ Out C3xQ16484(C3xQ16):3C4192,755
(C3xQ16):4C4 = D8:2Dic3φ: C4/C2C2 ⊆ Out C3xQ16484(C3xQ16):4C4192,125
(C3xQ16):5C4 = Q16:Dic3φ: C4/C2C2 ⊆ Out C3xQ16192(C3xQ16):5C4192,743
(C3xQ16):6C4 = D8:4Dic3φ: C4/C2C2 ⊆ Out C3xQ16484(C3xQ16):6C4192,756
(C3xQ16):7C4 = C3xC2.Q32φ: C4/C2C2 ⊆ Out C3xQ16192(C3xQ16):7C4192,164
(C3xQ16):8C4 = C3xD8:2C4φ: C4/C2C2 ⊆ Out C3xQ16484(C3xQ16):8C4192,166
(C3xQ16):9C4 = C3xQ16:C4φ: C4/C2C2 ⊆ Out C3xQ16192(C3xQ16):9C4192,874
(C3xQ16):10C4 = C3xC8.26D4φ: C4/C2C2 ⊆ Out C3xQ16484(C3xQ16):10C4192,877
(C3xQ16):11C4 = C3xC8oD8φ: trivial image482(C3xQ16):11C4192,876

Non-split extensions G=N.Q with N=C3xQ16 and Q=C4
extensionφ:Q→Out NdρLabelID
(C3xQ16).1C4 = C24.41D4φ: C4/C2C2 ⊆ Out C3xQ16964(C3xQ16).1C4192,126
(C3xQ16).2C4 = Q16.Dic3φ: C4/C2C2 ⊆ Out C3xQ16964(C3xQ16).2C4192,124
(C3xQ16).3C4 = C3xD8.C4φ: C4/C2C2 ⊆ Out C3xQ16962(C3xQ16).3C4192,165
(C3xQ16).4C4 = C3xC8.17D4φ: C4/C2C2 ⊆ Out C3xQ16964(C3xQ16).4C4192,168

׿
x
:
Z
F
o
wr
Q
<