d | ρ | Label | ID | ||
---|---|---|---|---|---|
Dic3xC22xC4 | 192 | Dic3xC2^2xC4 | 192,1341 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4xDic3):1C2 = (C2xD12):10C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):1C2 | 192,547 | |
(C2xC4xDic3):2C2 = C2xD12:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 48 | (C2xC4xDic3):2C2 | 192,697 | |
(C2xC4xDic3):3C2 = C24.30D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):3C2 | 192,780 | |
(C2xC4xDic3):4C2 = C2xQ8:3Dic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 48 | (C2xC4xDic3):4C2 | 192,794 | |
(C2xC4xDic3):5C2 = C2xDic3:5D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):5C2 | 192,1062 | |
(C2xC4xDic3):6C2 = C42.188D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):6C2 | 192,1081 | |
(C2xC4xDic3):7C2 = C12:(C4oD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):7C2 | 192,1155 | |
(C2xC4xDic3):8C2 = C4:C4.178D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):8C2 | 192,1159 | |
(C2xC4xDic3):9C2 = C4:C4.187D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):9C2 | 192,1183 | |
(C2xC4xDic3):10C2 = C2xD4xDic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):10C2 | 192,1354 | |
(C2xC4xDic3):11C2 = C2xC23.12D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):11C2 | 192,1356 | |
(C2xC4xDic3):12C2 = C2xC12:3D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):12C2 | 192,1362 | |
(C2xC4xDic3):13C2 = C2xC12.23D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):13C2 | 192,1373 | |
(C2xC4xDic3):14C2 = Dic3xC4oD4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):14C2 | 192,1385 | |
(C2xC4xDic3):15C2 = (C2xC12):17D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):15C2 | 192,1391 | |
(C2xC4xDic3):16C2 = D6:C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):16C2 | 192,225 | |
(C2xC4xDic3):17C2 = D6:C4:5C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):17C2 | 192,228 | |
(C2xC4xDic3):18C2 = D6:C4:3C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):18C2 | 192,229 | |
(C2xC4xDic3):19C2 = C4xD6:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):19C2 | 192,497 | |
(C2xC4xDic3):20C2 = Dic3xC22:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):20C2 | 192,500 | |
(C2xC4xDic3):21C2 = C24.14D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):21C2 | 192,503 | |
(C2xC4xDic3):22C2 = C24.15D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):22C2 | 192,504 | |
(C2xC4xDic3):23C2 = C24.19D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):23C2 | 192,510 | |
(C2xC4xDic3):24C2 = C24.24D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):24C2 | 192,516 | |
(C2xC4xDic3):25C2 = D6:C4:7C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):25C2 | 192,549 | |
(C2xC4xDic3):26C2 = C4xC6.D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):26C2 | 192,768 | |
(C2xC4xDic3):27C2 = C2xC42:2S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):27C2 | 192,1031 | |
(C2xC4xDic3):28C2 = C2xC23.16D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):28C2 | 192,1039 | |
(C2xC4xDic3):29C2 = C2xC23.8D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):29C2 | 192,1041 | |
(C2xC4xDic3):30C2 = C2xDic3:4D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):30C2 | 192,1044 | |
(C2xC4xDic3):31C2 = C2xC23.11D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):31C2 | 192,1050 | |
(C2xC4xDic3):32C2 = C2xC4:C4:7S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):32C2 | 192,1061 | |
(C2xC4xDic3):33C2 = C2xC4:C4:S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):33C2 | 192,1071 | |
(C2xC4xDic3):34C2 = C4xD4:2S3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):34C2 | 192,1095 | |
(C2xC4xDic3):35C2 = C42.102D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):35C2 | 192,1097 | |
(C2xC4xDic3):36C2 = C4:C4.197D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):36C2 | 192,1208 | |
(C2xC4xDic3):37C2 = C2xC23.26D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):37C2 | 192,1345 | |
(C2xC4xDic3):38C2 = C2xC4xC3:D4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3):38C2 | 192,1347 | |
(C2xC4xDic3):39C2 = S3xC2xC42 | φ: trivial image | 96 | (C2xC4xDic3):39C2 | 192,1030 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C2xC4xDic3).1C2 = C12.2C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 48 | (C2xC4xDic3).1C2 | 192,91 | |
(C2xC4xDic3).2C2 = C12.3C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 48 | (C2xC4xDic3).2C2 | 192,114 | |
(C2xC4xDic3).3C2 = C12:(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).3C2 | 192,531 | |
(C2xC4xDic3).4C2 = C4.(D6:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).4C2 | 192,532 | |
(C2xC4xDic3).5C2 = Dic3xC4:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).5C2 | 192,533 | |
(C2xC4xDic3).6C2 = (C4xDic3):8C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).6C2 | 192,534 | |
(C2xC4xDic3).7C2 = (C4xDic3):9C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).7C2 | 192,536 | |
(C2xC4xDic3).8C2 = C4:C4:6Dic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).8C2 | 192,543 | |
(C2xC4xDic3).9C2 = Dic3xM4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3).9C2 | 192,676 | |
(C2xC4xDic3).10C2 = Dic3:4M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3).10C2 | 192,677 | |
(C2xC4xDic3).11C2 = (C6xQ8):7C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).11C2 | 192,788 | |
(C2xC4xDic3).12C2 = C2xC12:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).12C2 | 192,1056 | |
(C2xC4xDic3).13C2 = C2xC4.Dic6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).13C2 | 192,1058 | |
(C2xC4xDic3).14C2 = C42.88D6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3).14C2 | 192,1076 | |
(C2xC4xDic3).15C2 = (Q8xDic3):C2 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3).15C2 | 192,1181 | |
(C2xC4xDic3).16C2 = C2xDic3:Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).16C2 | 192,1369 | |
(C2xC4xDic3).17C2 = C2xQ8xDic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).17C2 | 192,1370 | |
(C2xC4xDic3).18C2 = (C2xC24):5C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).18C2 | 192,109 | |
(C2xC4xDic3).19C2 = (C2xC12):Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).19C2 | 192,205 | |
(C2xC4xDic3).20C2 = C6.(C4xQ8) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).20C2 | 192,206 | |
(C2xC4xDic3).21C2 = Dic3.5C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).21C2 | 192,207 | |
(C2xC4xDic3).22C2 = Dic3:C42 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).22C2 | 192,208 | |
(C2xC4xDic3).23C2 = C3:(C42:8C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).23C2 | 192,209 | |
(C2xC4xDic3).24C2 = C3:(C42:5C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).24C2 | 192,210 | |
(C2xC4xDic3).25C2 = C6.(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).25C2 | 192,211 | |
(C2xC4xDic3).26C2 = C2.(C4xD12) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).26C2 | 192,212 | |
(C2xC4xDic3).27C2 = C2.(C4xDic6) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).27C2 | 192,213 | |
(C2xC4xDic3).28C2 = Dic3:C4:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).28C2 | 192,214 | |
(C2xC4xDic3).29C2 = Dic3.5M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3).29C2 | 192,277 | |
(C2xC4xDic3).30C2 = Dic3.M4(2) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 96 | (C2xC4xDic3).30C2 | 192,278 | |
(C2xC4xDic3).31C2 = C4xDic3:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).31C2 | 192,490 | |
(C2xC4xDic3).32C2 = C42:6Dic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).32C2 | 192,491 | |
(C2xC4xDic3).33C2 = C4xC4:Dic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).33C2 | 192,493 | |
(C2xC4xDic3).34C2 = Dic3:(C4:C4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).34C2 | 192,535 | |
(C2xC4xDic3).35C2 = C6.67(C4xD4) | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).35C2 | 192,537 | |
(C2xC4xDic3).36C2 = C4:C4:5Dic3 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).36C2 | 192,539 | |
(C2xC4xDic3).37C2 = C2xDic3:C8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).37C2 | 192,658 | |
(C2xC4xDic3).38C2 = C2xC24:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).38C2 | 192,659 | |
(C2xC4xDic3).39C2 = C2xC4xDic6 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).39C2 | 192,1026 | |
(C2xC4xDic3).40C2 = C2xDic6:C4 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).40C2 | 192,1055 | |
(C2xC4xDic3).41C2 = C2xDic3.Q8 | φ: C2/C1 → C2 ⊆ Out C2xC4xDic3 | 192 | (C2xC4xDic3).41C2 | 192,1057 | |
(C2xC4xDic3).42C2 = Dic3xC42 | φ: trivial image | 192 | (C2xC4xDic3).42C2 | 192,489 | |
(C2xC4xDic3).43C2 = Dic3xC2xC8 | φ: trivial image | 192 | (C2xC4xDic3).43C2 | 192,657 |