Extensions 1→N→G→Q→1 with N=C2xC4xDic3 and Q=C2

Direct product G=NxQ with N=C2xC4xDic3 and Q=C2
dρLabelID
Dic3xC22xC4192Dic3xC2^2xC4192,1341

Semidirect products G=N:Q with N=C2xC4xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4xDic3):1C2 = (C2xD12):10C4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):1C2192,547
(C2xC4xDic3):2C2 = C2xD12:C4φ: C2/C1C2 ⊆ Out C2xC4xDic348(C2xC4xDic3):2C2192,697
(C2xC4xDic3):3C2 = C24.30D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):3C2192,780
(C2xC4xDic3):4C2 = C2xQ8:3Dic3φ: C2/C1C2 ⊆ Out C2xC4xDic348(C2xC4xDic3):4C2192,794
(C2xC4xDic3):5C2 = C2xDic3:5D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):5C2192,1062
(C2xC4xDic3):6C2 = C42.188D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):6C2192,1081
(C2xC4xDic3):7C2 = C12:(C4oD4)φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):7C2192,1155
(C2xC4xDic3):8C2 = C4:C4.178D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):8C2192,1159
(C2xC4xDic3):9C2 = C4:C4.187D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):9C2192,1183
(C2xC4xDic3):10C2 = C2xD4xDic3φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):10C2192,1354
(C2xC4xDic3):11C2 = C2xC23.12D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):11C2192,1356
(C2xC4xDic3):12C2 = C2xC12:3D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):12C2192,1362
(C2xC4xDic3):13C2 = C2xC12.23D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):13C2192,1373
(C2xC4xDic3):14C2 = Dic3xC4oD4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):14C2192,1385
(C2xC4xDic3):15C2 = (C2xC12):17D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):15C2192,1391
(C2xC4xDic3):16C2 = D6:C42φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):16C2192,225
(C2xC4xDic3):17C2 = D6:C4:5C4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):17C2192,228
(C2xC4xDic3):18C2 = D6:C4:3C4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):18C2192,229
(C2xC4xDic3):19C2 = C4xD6:C4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):19C2192,497
(C2xC4xDic3):20C2 = Dic3xC22:C4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):20C2192,500
(C2xC4xDic3):21C2 = C24.14D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):21C2192,503
(C2xC4xDic3):22C2 = C24.15D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):22C2192,504
(C2xC4xDic3):23C2 = C24.19D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):23C2192,510
(C2xC4xDic3):24C2 = C24.24D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):24C2192,516
(C2xC4xDic3):25C2 = D6:C4:7C4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):25C2192,549
(C2xC4xDic3):26C2 = C4xC6.D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):26C2192,768
(C2xC4xDic3):27C2 = C2xC42:2S3φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):27C2192,1031
(C2xC4xDic3):28C2 = C2xC23.16D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):28C2192,1039
(C2xC4xDic3):29C2 = C2xC23.8D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):29C2192,1041
(C2xC4xDic3):30C2 = C2xDic3:4D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):30C2192,1044
(C2xC4xDic3):31C2 = C2xC23.11D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):31C2192,1050
(C2xC4xDic3):32C2 = C2xC4:C4:7S3φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):32C2192,1061
(C2xC4xDic3):33C2 = C2xC4:C4:S3φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):33C2192,1071
(C2xC4xDic3):34C2 = C4xD4:2S3φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):34C2192,1095
(C2xC4xDic3):35C2 = C42.102D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):35C2192,1097
(C2xC4xDic3):36C2 = C4:C4.197D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):36C2192,1208
(C2xC4xDic3):37C2 = C2xC23.26D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):37C2192,1345
(C2xC4xDic3):38C2 = C2xC4xC3:D4φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3):38C2192,1347
(C2xC4xDic3):39C2 = S3xC2xC42φ: trivial image96(C2xC4xDic3):39C2192,1030

Non-split extensions G=N.Q with N=C2xC4xDic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2xC4xDic3).1C2 = C12.2C42φ: C2/C1C2 ⊆ Out C2xC4xDic348(C2xC4xDic3).1C2192,91
(C2xC4xDic3).2C2 = C12.3C42φ: C2/C1C2 ⊆ Out C2xC4xDic348(C2xC4xDic3).2C2192,114
(C2xC4xDic3).3C2 = C12:(C4:C4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).3C2192,531
(C2xC4xDic3).4C2 = C4.(D6:C4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).4C2192,532
(C2xC4xDic3).5C2 = Dic3xC4:C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).5C2192,533
(C2xC4xDic3).6C2 = (C4xDic3):8C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).6C2192,534
(C2xC4xDic3).7C2 = (C4xDic3):9C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).7C2192,536
(C2xC4xDic3).8C2 = C4:C4:6Dic3φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).8C2192,543
(C2xC4xDic3).9C2 = Dic3xM4(2)φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3).9C2192,676
(C2xC4xDic3).10C2 = Dic3:4M4(2)φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3).10C2192,677
(C2xC4xDic3).11C2 = (C6xQ8):7C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).11C2192,788
(C2xC4xDic3).12C2 = C2xC12:Q8φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).12C2192,1056
(C2xC4xDic3).13C2 = C2xC4.Dic6φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).13C2192,1058
(C2xC4xDic3).14C2 = C42.88D6φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3).14C2192,1076
(C2xC4xDic3).15C2 = (Q8xDic3):C2φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3).15C2192,1181
(C2xC4xDic3).16C2 = C2xDic3:Q8φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).16C2192,1369
(C2xC4xDic3).17C2 = C2xQ8xDic3φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).17C2192,1370
(C2xC4xDic3).18C2 = (C2xC24):5C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).18C2192,109
(C2xC4xDic3).19C2 = (C2xC12):Q8φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).19C2192,205
(C2xC4xDic3).20C2 = C6.(C4xQ8)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).20C2192,206
(C2xC4xDic3).21C2 = Dic3.5C42φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).21C2192,207
(C2xC4xDic3).22C2 = Dic3:C42φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).22C2192,208
(C2xC4xDic3).23C2 = C3:(C42:8C4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).23C2192,209
(C2xC4xDic3).24C2 = C3:(C42:5C4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).24C2192,210
(C2xC4xDic3).25C2 = C6.(C4xD4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).25C2192,211
(C2xC4xDic3).26C2 = C2.(C4xD12)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).26C2192,212
(C2xC4xDic3).27C2 = C2.(C4xDic6)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).27C2192,213
(C2xC4xDic3).28C2 = Dic3:C4:C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).28C2192,214
(C2xC4xDic3).29C2 = Dic3.5M4(2)φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3).29C2192,277
(C2xC4xDic3).30C2 = Dic3.M4(2)φ: C2/C1C2 ⊆ Out C2xC4xDic396(C2xC4xDic3).30C2192,278
(C2xC4xDic3).31C2 = C4xDic3:C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).31C2192,490
(C2xC4xDic3).32C2 = C42:6Dic3φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).32C2192,491
(C2xC4xDic3).33C2 = C4xC4:Dic3φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).33C2192,493
(C2xC4xDic3).34C2 = Dic3:(C4:C4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).34C2192,535
(C2xC4xDic3).35C2 = C6.67(C4xD4)φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).35C2192,537
(C2xC4xDic3).36C2 = C4:C4:5Dic3φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).36C2192,539
(C2xC4xDic3).37C2 = C2xDic3:C8φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).37C2192,658
(C2xC4xDic3).38C2 = C2xC24:C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).38C2192,659
(C2xC4xDic3).39C2 = C2xC4xDic6φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).39C2192,1026
(C2xC4xDic3).40C2 = C2xDic6:C4φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).40C2192,1055
(C2xC4xDic3).41C2 = C2xDic3.Q8φ: C2/C1C2 ⊆ Out C2xC4xDic3192(C2xC4xDic3).41C2192,1057
(C2xC4xDic3).42C2 = Dic3xC42φ: trivial image192(C2xC4xDic3).42C2192,489
(C2xC4xDic3).43C2 = Dic3xC2xC8φ: trivial image192(C2xC4xDic3).43C2192,657

׿
x
:
Z
F
o
wr
Q
<