Copied to
clipboard

G = C12⋊(C4○D4)  order 192 = 26·3

2nd semidirect product of C12 and C4○D4 acting via C4○D4/C22=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12⋊Q818C2, C129(C4○D4), C4⋊D425S3, C4⋊C4.175D6, C123D414C2, C127D431C2, C43(D42S3), C22.1(S3×D4), (D4×Dic3)⋊14C2, (C2×Dic3)⋊13D4, (C2×D4).150D6, C22⋊C4.45D6, Dic3.5(C2×D4), Dic35D419C2, C6.59(C22×D4), Dic32(C4○D4), Dic34D45C2, C23.14D67C2, (C2×C6).140C24, (C2×C12).34C23, D6⋊C4.57C22, (C22×C4).382D6, (C6×D4).114C22, (C22×C6).11C23, C23.11D616C2, (C2×D12).141C22, Dic3⋊C4.12C22, (C22×S3).59C23, C4⋊Dic3.203C22, C23.188(C22×S3), C22.161(S3×C23), C33(C22.26C24), (C22×C12).235C22, (C2×Dic3).223C23, (C2×Dic6).150C22, (C4×Dic3).254C22, C6.D4.18C22, (C22×Dic3).221C22, C2.32(C2×S3×D4), (C2×C4×Dic3)⋊7C2, (C2×C6).3(C2×D4), (C3×C4⋊D4)⋊5C2, C6.79(C2×C4○D4), C2.33(S3×C4○D4), (C2×D42S3)⋊8C2, (S3×C2×C4).79C22, C2.30(C2×D42S3), (C2×C4).34(C22×S3), (C3×C4⋊C4).136C22, (C2×C3⋊D4).23C22, (C3×C22⋊C4).5C22, SmallGroup(192,1155)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C12⋊(C4○D4)
C1C3C6C2×C6C2×Dic3C22×Dic3C2×D42S3 — C12⋊(C4○D4)
C3C2×C6 — C12⋊(C4○D4)
C1C22C4⋊D4

Generators and relations for C12⋊(C4○D4)
 G = < a,b,c,d | a12=b4=d2=1, c2=b2, bab-1=a5, cac-1=a7, ad=da, bc=cb, bd=db, dcd=b2c >

Subgroups: 784 in 310 conjugacy classes, 109 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C22×C6, C2×C42, C4×D4, C4⋊D4, C4⋊D4, C4.4D4, C41D4, C4⋊Q8, C2×C4○D4, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, D42S3, C22×Dic3, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, C6×D4, C22.26C24, Dic34D4, C23.11D6, C12⋊Q8, Dic35D4, C2×C4×Dic3, C127D4, D4×Dic3, C23.14D6, C123D4, C3×C4⋊D4, C2×D42S3, C12⋊(C4○D4)
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C24, C22×S3, C22×D4, C2×C4○D4, S3×D4, D42S3, S3×C23, C22.26C24, C2×S3×D4, C2×D42S3, S3×C4○D4, C12⋊(C4○D4)

Smallest permutation representation of C12⋊(C4○D4)
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 16 48 76)(2 21 37 81)(3 14 38 74)(4 19 39 79)(5 24 40 84)(6 17 41 77)(7 22 42 82)(8 15 43 75)(9 20 44 80)(10 13 45 73)(11 18 46 78)(12 23 47 83)(25 64 96 60)(26 69 85 53)(27 62 86 58)(28 67 87 51)(29 72 88 56)(30 65 89 49)(31 70 90 54)(32 63 91 59)(33 68 92 52)(34 61 93 57)(35 66 94 50)(36 71 95 55)
(1 76 48 16)(2 83 37 23)(3 78 38 18)(4 73 39 13)(5 80 40 20)(6 75 41 15)(7 82 42 22)(8 77 43 17)(9 84 44 24)(10 79 45 19)(11 74 46 14)(12 81 47 21)(25 70 96 54)(26 65 85 49)(27 72 86 56)(28 67 87 51)(29 62 88 58)(30 69 89 53)(31 64 90 60)(32 71 91 55)(33 66 92 50)(34 61 93 57)(35 68 94 52)(36 63 95 59)
(1 61)(2 62)(3 63)(4 64)(5 65)(6 66)(7 67)(8 68)(9 69)(10 70)(11 71)(12 72)(13 90)(14 91)(15 92)(16 93)(17 94)(18 95)(19 96)(20 85)(21 86)(22 87)(23 88)(24 89)(25 79)(26 80)(27 81)(28 82)(29 83)(30 84)(31 73)(32 74)(33 75)(34 76)(35 77)(36 78)(37 58)(38 59)(39 60)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 57)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,16,48,76)(2,21,37,81)(3,14,38,74)(4,19,39,79)(5,24,40,84)(6,17,41,77)(7,22,42,82)(8,15,43,75)(9,20,44,80)(10,13,45,73)(11,18,46,78)(12,23,47,83)(25,64,96,60)(26,69,85,53)(27,62,86,58)(28,67,87,51)(29,72,88,56)(30,65,89,49)(31,70,90,54)(32,63,91,59)(33,68,92,52)(34,61,93,57)(35,66,94,50)(36,71,95,55), (1,76,48,16)(2,83,37,23)(3,78,38,18)(4,73,39,13)(5,80,40,20)(6,75,41,15)(7,82,42,22)(8,77,43,17)(9,84,44,24)(10,79,45,19)(11,74,46,14)(12,81,47,21)(25,70,96,54)(26,65,85,49)(27,72,86,56)(28,67,87,51)(29,62,88,58)(30,69,89,53)(31,64,90,60)(32,71,91,55)(33,66,92,50)(34,61,93,57)(35,68,94,52)(36,63,95,59), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,85)(21,86)(22,87)(23,88)(24,89)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,58)(38,59)(39,60)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,16,48,76)(2,21,37,81)(3,14,38,74)(4,19,39,79)(5,24,40,84)(6,17,41,77)(7,22,42,82)(8,15,43,75)(9,20,44,80)(10,13,45,73)(11,18,46,78)(12,23,47,83)(25,64,96,60)(26,69,85,53)(27,62,86,58)(28,67,87,51)(29,72,88,56)(30,65,89,49)(31,70,90,54)(32,63,91,59)(33,68,92,52)(34,61,93,57)(35,66,94,50)(36,71,95,55), (1,76,48,16)(2,83,37,23)(3,78,38,18)(4,73,39,13)(5,80,40,20)(6,75,41,15)(7,82,42,22)(8,77,43,17)(9,84,44,24)(10,79,45,19)(11,74,46,14)(12,81,47,21)(25,70,96,54)(26,65,85,49)(27,72,86,56)(28,67,87,51)(29,62,88,58)(30,69,89,53)(31,64,90,60)(32,71,91,55)(33,66,92,50)(34,61,93,57)(35,68,94,52)(36,63,95,59), (1,61)(2,62)(3,63)(4,64)(5,65)(6,66)(7,67)(8,68)(9,69)(10,70)(11,71)(12,72)(13,90)(14,91)(15,92)(16,93)(17,94)(18,95)(19,96)(20,85)(21,86)(22,87)(23,88)(24,89)(25,79)(26,80)(27,81)(28,82)(29,83)(30,84)(31,73)(32,74)(33,75)(34,76)(35,77)(36,78)(37,58)(38,59)(39,60)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,16,48,76),(2,21,37,81),(3,14,38,74),(4,19,39,79),(5,24,40,84),(6,17,41,77),(7,22,42,82),(8,15,43,75),(9,20,44,80),(10,13,45,73),(11,18,46,78),(12,23,47,83),(25,64,96,60),(26,69,85,53),(27,62,86,58),(28,67,87,51),(29,72,88,56),(30,65,89,49),(31,70,90,54),(32,63,91,59),(33,68,92,52),(34,61,93,57),(35,66,94,50),(36,71,95,55)], [(1,76,48,16),(2,83,37,23),(3,78,38,18),(4,73,39,13),(5,80,40,20),(6,75,41,15),(7,82,42,22),(8,77,43,17),(9,84,44,24),(10,79,45,19),(11,74,46,14),(12,81,47,21),(25,70,96,54),(26,65,85,49),(27,72,86,56),(28,67,87,51),(29,62,88,58),(30,69,89,53),(31,64,90,60),(32,71,91,55),(33,66,92,50),(34,61,93,57),(35,68,94,52),(36,63,95,59)], [(1,61),(2,62),(3,63),(4,64),(5,65),(6,66),(7,67),(8,68),(9,69),(10,70),(11,71),(12,72),(13,90),(14,91),(15,92),(16,93),(17,94),(18,95),(19,96),(20,85),(21,86),(22,87),(23,88),(24,89),(25,79),(26,80),(27,81),(28,82),(29,83),(30,84),(31,73),(32,74),(33,75),(34,76),(35,77),(36,78),(37,58),(38,59),(39,60),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,57)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J4K···4P4Q4R6A6B6C6D6E6F6G12A12B12C12D12E12F
order1222222222344444444444···4446666666121212121212
size111122441212222223333446···612122224488444488

42 irreducible representations

dim11111111111122222222444
type++++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D4C4○D4D42S3S3×D4S3×C4○D4
kernelC12⋊(C4○D4)Dic34D4C23.11D6C12⋊Q8Dic35D4C2×C4×Dic3C127D4D4×Dic3C23.14D6C123D4C3×C4⋊D4C2×D42S3C4⋊D4C2×Dic3C22⋊C4C4⋊C4C22×C4C2×D4Dic3C12C4C22C2
# reps12211111211214211344222

Matrix representation of C12⋊(C4○D4) in GL6(𝔽13)

010000
12120000
0012200
0012100
000010
000001
,
100000
12120000
001000
000100
000080
000008
,
100000
010000
001000
0011200
000050
000008
,
100000
010000
0012000
0001200
000008
000050

G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,1,12,0,0,0,0,0,0,12,12,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,12,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,12,0,0,0,0,0,0,5,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,5,0,0,0,0,8,0] >;

C12⋊(C4○D4) in GAP, Magma, Sage, TeX

C_{12}\rtimes (C_4\circ D_4)
% in TeX

G:=Group("C12:(C4oD4)");
// GroupNames label

G:=SmallGroup(192,1155);
// by ID

G=gap.SmallGroup(192,1155);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,387,570,185,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^4=d^2=1,c^2=b^2,b*a*b^-1=a^5,c*a*c^-1=a^7,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=b^2*c>;
// generators/relations

׿
×
𝔽