Copied to
clipboard

G = C4⋊C4.187D6order 192 = 26·3

60th non-split extension by C4⋊C4 of D6 acting via D6/S3=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4⋊C4.187D6, C22⋊Q825S3, (Q8×Dic3)⋊11C2, (C2×Q8).146D6, C22⋊C4.54D6, Dic35D423C2, C127D4.15C2, (C2×C6).168C24, D6⋊C4.19C22, C4.Dic622C2, (C22×C4).386D6, Dic34D413C2, C12.208(C4○D4), C4.71(D42S3), C12.23D411C2, (C2×C12).502C23, (C6×Q8).103C22, Dic3.42(C4○D4), (C2×D12).147C22, C23.21D615C2, Dic3⋊C4.23C22, (C22×S3).73C23, C4⋊Dic3.212C22, C23.196(C22×S3), (C22×C6).196C23, C22.189(S3×C23), C22.3(Q83S3), (C22×C12).248C22, C37(C23.36C23), (C2×Dic3).232C23, (C4×Dic3).102C22, (C22×Dic3).223C22, (C2×C4×Dic3)⋊9C2, C4⋊C47S323C2, C4⋊C4⋊S316C2, C2.46(S3×C4○D4), (C3×C22⋊Q8)⋊5C2, C6.158(C2×C4○D4), (S3×C2×C4).91C22, (C2×C6).25(C4○D4), C2.44(C2×D42S3), (C2×C4).44(C22×S3), C2.15(C2×Q83S3), (C3×C4⋊C4).154C22, (C2×C3⋊D4).37C22, (C3×C22⋊C4).23C22, SmallGroup(192,1183)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C4⋊C4.187D6
C1C3C6C2×C6C2×Dic3C22×Dic3C2×C4×Dic3 — C4⋊C4.187D6
C3C2×C6 — C4⋊C4.187D6
C1C22C22⋊Q8

Generators and relations for C4⋊C4.187D6
 G = < a,b,c,d | a4=b4=c6=1, d2=b2, bab-1=a-1, ac=ca, ad=da, cbc-1=dbd-1=a2b-1, dcd-1=c-1 >

Subgroups: 544 in 234 conjugacy classes, 101 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, Dic3, C12, C12, D6, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4×S3, D12, C2×Dic3, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C2×C12, C3×Q8, C22×S3, C22×C6, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C422C2, C4×Dic3, C4×Dic3, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C3×C22⋊C4, C3×C4⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C22×C12, C6×Q8, C23.36C23, Dic34D4, C23.21D6, C4.Dic6, C4⋊C47S3, Dic35D4, C4⋊C4⋊S3, C2×C4×Dic3, C127D4, Q8×Dic3, C12.23D4, C3×C22⋊Q8, C4⋊C4.187D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, D42S3, Q83S3, S3×C23, C23.36C23, C2×D42S3, C2×Q83S3, S3×C4○D4, C4⋊C4.187D6

Smallest permutation representation of C4⋊C4.187D6
On 96 points
Generators in S96
(1 44 55 88)(2 45 56 89)(3 46 57 90)(4 47 58 85)(5 48 59 86)(6 43 60 87)(7 38 29 82)(8 39 30 83)(9 40 25 84)(10 41 26 79)(11 42 27 80)(12 37 28 81)(13 50 63 96)(14 51 64 91)(15 52 65 92)(16 53 66 93)(17 54 61 94)(18 49 62 95)(19 78 69 34)(20 73 70 35)(21 74 71 36)(22 75 72 31)(23 76 67 32)(24 77 68 33)
(1 79 73 17)(2 62 74 42)(3 81 75 13)(4 64 76 38)(5 83 77 15)(6 66 78 40)(7 47 51 67)(8 24 52 86)(9 43 53 69)(10 20 54 88)(11 45 49 71)(12 22 50 90)(14 32 82 58)(16 34 84 60)(18 36 80 56)(19 25 87 93)(21 27 89 95)(23 29 85 91)(26 70 94 44)(28 72 96 46)(30 68 92 48)(31 63 57 37)(33 65 59 39)(35 61 55 41)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 16 73 84)(2 15 74 83)(3 14 75 82)(4 13 76 81)(5 18 77 80)(6 17 78 79)(7 46 51 72)(8 45 52 71)(9 44 53 70)(10 43 54 69)(11 48 49 68)(12 47 50 67)(19 26 87 94)(20 25 88 93)(21 30 89 92)(22 29 90 91)(23 28 85 96)(24 27 86 95)(31 38 57 64)(32 37 58 63)(33 42 59 62)(34 41 60 61)(35 40 55 66)(36 39 56 65)

G:=sub<Sym(96)| (1,44,55,88)(2,45,56,89)(3,46,57,90)(4,47,58,85)(5,48,59,86)(6,43,60,87)(7,38,29,82)(8,39,30,83)(9,40,25,84)(10,41,26,79)(11,42,27,80)(12,37,28,81)(13,50,63,96)(14,51,64,91)(15,52,65,92)(16,53,66,93)(17,54,61,94)(18,49,62,95)(19,78,69,34)(20,73,70,35)(21,74,71,36)(22,75,72,31)(23,76,67,32)(24,77,68,33), (1,79,73,17)(2,62,74,42)(3,81,75,13)(4,64,76,38)(5,83,77,15)(6,66,78,40)(7,47,51,67)(8,24,52,86)(9,43,53,69)(10,20,54,88)(11,45,49,71)(12,22,50,90)(14,32,82,58)(16,34,84,60)(18,36,80,56)(19,25,87,93)(21,27,89,95)(23,29,85,91)(26,70,94,44)(28,72,96,46)(30,68,92,48)(31,63,57,37)(33,65,59,39)(35,61,55,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,16,73,84)(2,15,74,83)(3,14,75,82)(4,13,76,81)(5,18,77,80)(6,17,78,79)(7,46,51,72)(8,45,52,71)(9,44,53,70)(10,43,54,69)(11,48,49,68)(12,47,50,67)(19,26,87,94)(20,25,88,93)(21,30,89,92)(22,29,90,91)(23,28,85,96)(24,27,86,95)(31,38,57,64)(32,37,58,63)(33,42,59,62)(34,41,60,61)(35,40,55,66)(36,39,56,65)>;

G:=Group( (1,44,55,88)(2,45,56,89)(3,46,57,90)(4,47,58,85)(5,48,59,86)(6,43,60,87)(7,38,29,82)(8,39,30,83)(9,40,25,84)(10,41,26,79)(11,42,27,80)(12,37,28,81)(13,50,63,96)(14,51,64,91)(15,52,65,92)(16,53,66,93)(17,54,61,94)(18,49,62,95)(19,78,69,34)(20,73,70,35)(21,74,71,36)(22,75,72,31)(23,76,67,32)(24,77,68,33), (1,79,73,17)(2,62,74,42)(3,81,75,13)(4,64,76,38)(5,83,77,15)(6,66,78,40)(7,47,51,67)(8,24,52,86)(9,43,53,69)(10,20,54,88)(11,45,49,71)(12,22,50,90)(14,32,82,58)(16,34,84,60)(18,36,80,56)(19,25,87,93)(21,27,89,95)(23,29,85,91)(26,70,94,44)(28,72,96,46)(30,68,92,48)(31,63,57,37)(33,65,59,39)(35,61,55,41), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,16,73,84)(2,15,74,83)(3,14,75,82)(4,13,76,81)(5,18,77,80)(6,17,78,79)(7,46,51,72)(8,45,52,71)(9,44,53,70)(10,43,54,69)(11,48,49,68)(12,47,50,67)(19,26,87,94)(20,25,88,93)(21,30,89,92)(22,29,90,91)(23,28,85,96)(24,27,86,95)(31,38,57,64)(32,37,58,63)(33,42,59,62)(34,41,60,61)(35,40,55,66)(36,39,56,65) );

G=PermutationGroup([[(1,44,55,88),(2,45,56,89),(3,46,57,90),(4,47,58,85),(5,48,59,86),(6,43,60,87),(7,38,29,82),(8,39,30,83),(9,40,25,84),(10,41,26,79),(11,42,27,80),(12,37,28,81),(13,50,63,96),(14,51,64,91),(15,52,65,92),(16,53,66,93),(17,54,61,94),(18,49,62,95),(19,78,69,34),(20,73,70,35),(21,74,71,36),(22,75,72,31),(23,76,67,32),(24,77,68,33)], [(1,79,73,17),(2,62,74,42),(3,81,75,13),(4,64,76,38),(5,83,77,15),(6,66,78,40),(7,47,51,67),(8,24,52,86),(9,43,53,69),(10,20,54,88),(11,45,49,71),(12,22,50,90),(14,32,82,58),(16,34,84,60),(18,36,80,56),(19,25,87,93),(21,27,89,95),(23,29,85,91),(26,70,94,44),(28,72,96,46),(30,68,92,48),(31,63,57,37),(33,65,59,39),(35,61,55,41)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,16,73,84),(2,15,74,83),(3,14,75,82),(4,13,76,81),(5,18,77,80),(6,17,78,79),(7,46,51,72),(8,45,52,71),(9,44,53,70),(10,43,54,69),(11,48,49,68),(12,47,50,67),(19,26,87,94),(20,25,88,93),(21,30,89,92),(22,29,90,91),(23,28,85,96),(24,27,86,95),(31,38,57,64),(32,37,58,63),(33,42,59,62),(34,41,60,61),(35,40,55,66),(36,39,56,65)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L4M···4R4S4T6A6B6C6D6E12A12B12C12D12E12F12G12H
order1222222234444444444444···444666661212121212121212
size111122121222222333344446···612122224444448888

42 irreducible representations

dim11111111111122222222444
type+++++++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6D6C4○D4C4○D4C4○D4D42S3Q83S3S3×C4○D4
kernelC4⋊C4.187D6Dic34D4C23.21D6C4.Dic6C4⋊C47S3Dic35D4C4⋊C4⋊S3C2×C4×Dic3C127D4Q8×Dic3C12.23D4C3×C22⋊Q8C22⋊Q8C22⋊C4C4⋊C4C22×C4C2×Q8Dic3C12C2×C6C4C22C2
# reps12212121111112311444222

Matrix representation of C4⋊C4.187D6 in GL6(𝔽13)

100000
010000
0010900
009300
00001211
000011
,
100000
010000
001000
0051200
000050
000088
,
0120000
1120000
002700
0071100
0000120
0000012
,
1120000
0120000
002700
0071100
000050
000005

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,10,9,0,0,0,0,9,3,0,0,0,0,0,0,12,1,0,0,0,0,11,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,5,0,0,0,0,0,12,0,0,0,0,0,0,5,8,0,0,0,0,0,8],[0,1,0,0,0,0,12,12,0,0,0,0,0,0,2,7,0,0,0,0,7,11,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,12,12,0,0,0,0,0,0,2,7,0,0,0,0,7,11,0,0,0,0,0,0,5,0,0,0,0,0,0,5] >;

C4⋊C4.187D6 in GAP, Magma, Sage, TeX

C_4\rtimes C_4._{187}D_6
% in TeX

G:=Group("C4:C4.187D6");
// GroupNames label

G:=SmallGroup(192,1183);
// by ID

G=gap.SmallGroup(192,1183);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,100,794,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d^-1=a^2*b^-1,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽