Extensions 1→N→G→Q→1 with N=C3 and Q=D4⋊D4

Direct product G=N×Q with N=C3 and Q=D4⋊D4
dρLabelID
C3×D4⋊D496C3xD4:D4192,882

Semidirect products G=N:Q with N=C3 and Q=D4⋊D4
extensionφ:Q→Aut NdρLabelID
C31(D4⋊D4) = D1214D4φ: D4⋊D4/C22⋊C8C2 ⊆ Aut C396C3:1(D4:D4)192,293
C32(D4⋊D4) = D43D12φ: D4⋊D4/D4⋊C4C2 ⊆ Aut C396C3:2(D4:D4)192,340
C33(D4⋊D4) = Q84D12φ: D4⋊D4/Q8⋊C4C2 ⊆ Aut C396C3:3(D4:D4)192,369
C34(D4⋊D4) = D1217D4φ: D4⋊D4/C4⋊D4C2 ⊆ Aut C396C3:4(D4:D4)192,596
C35(D4⋊D4) = Dic6⋊D4φ: D4⋊D4/C2×D8C2 ⊆ Aut C396C3:5(D4:D4)192,717
C36(D4⋊D4) = D127D4φ: D4⋊D4/C2×SD16C2 ⊆ Aut C396C3:6(D4:D4)192,731
C37(D4⋊D4) = (C3×D4)⋊14D4φ: D4⋊D4/C2×C4○D4C2 ⊆ Aut C396C3:7(D4:D4)192,797


׿
×
𝔽