Copied to
clipboard

G = D43D12order 192 = 26·3

2nd semidirect product of D4 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D43D12, Dic63D4, (C3×D4)⋊2D4, D6⋊C812C2, C4⋊C4.12D6, C4.3(C2×D12), C4.86(S3×D4), C12.2(C2×D4), C12⋊D43C2, C32(D4⋊D4), (C2×C8).117D6, D4⋊C413S3, C6.21C22≀C2, (C2×D4).136D6, C6.42(C4○D8), C6.SD166C2, C2.17(D8⋊S3), C6.35(C8⋊C22), (C22×S3).13D4, (C6×D4).42C22, C22.179(S3×D4), C2.24(D6⋊D4), (C2×C12).221C23, (C2×C24).128C22, (C2×Dic3).142D4, (C2×D12).51C22, C2.12(Q8.7D6), (C2×Dic6).59C22, (C2×D4⋊S3)⋊4C2, (C2×C24⋊C2)⋊15C2, (C2×D42S3)⋊1C2, (C2×C6).234(C2×D4), (C2×C3⋊C8).19C22, (S3×C2×C4).13C22, (C3×D4⋊C4)⋊13C2, (C3×C4⋊C4).22C22, (C2×C4).328(C22×S3), SmallGroup(192,340)

Series: Derived Chief Lower central Upper central

C1C2×C12 — D43D12
C1C3C6C2×C6C2×C12S3×C2×C4C2×D42S3 — D43D12
C3C6C2×C12 — D43D12
C1C22C2×C4D4⋊C4

Generators and relations for D43D12
 G = < a,b,c,d | a4=b2=c12=d2=1, bab=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=c-1 >

Subgroups: 552 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C22×S3, C22×S3, C22×C6, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, C24⋊C2, C2×C3⋊C8, D6⋊C4, D4⋊S3, C3×C4⋊C4, C2×C24, C2×Dic6, S3×C2×C4, C2×D12, C2×D12, D42S3, C22×Dic3, C2×C3⋊D4, C6×D4, D4⋊D4, C6.SD16, D6⋊C8, C3×D4⋊C4, C12⋊D4, C2×C24⋊C2, C2×D4⋊S3, C2×D42S3, D43D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C4○D8, C8⋊C22, C2×D12, S3×D4, D4⋊D4, D6⋊D4, D8⋊S3, Q8.7D6, D43D12

Smallest permutation representation of D43D12
On 96 points
Generators in S96
(1 40 33 68)(2 69 34 41)(3 42 35 70)(4 71 36 43)(5 44 25 72)(6 61 26 45)(7 46 27 62)(8 63 28 47)(9 48 29 64)(10 65 30 37)(11 38 31 66)(12 67 32 39)(13 73 57 86)(14 87 58 74)(15 75 59 88)(16 89 60 76)(17 77 49 90)(18 91 50 78)(19 79 51 92)(20 93 52 80)(21 81 53 94)(22 95 54 82)(23 83 55 96)(24 85 56 84)
(1 57)(2 87)(3 59)(4 89)(5 49)(6 91)(7 51)(8 93)(9 53)(10 95)(11 55)(12 85)(13 33)(14 69)(15 35)(16 71)(17 25)(18 61)(19 27)(20 63)(21 29)(22 65)(23 31)(24 67)(26 78)(28 80)(30 82)(32 84)(34 74)(36 76)(37 54)(38 83)(39 56)(40 73)(41 58)(42 75)(43 60)(44 77)(45 50)(46 79)(47 52)(48 81)(62 92)(64 94)(66 96)(68 86)(70 88)(72 90)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 88)(14 87)(15 86)(16 85)(17 96)(18 95)(19 94)(20 93)(21 92)(22 91)(23 90)(24 89)(25 31)(26 30)(27 29)(32 36)(33 35)(37 61)(38 72)(39 71)(40 70)(41 69)(42 68)(43 67)(44 66)(45 65)(46 64)(47 63)(48 62)(49 83)(50 82)(51 81)(52 80)(53 79)(54 78)(55 77)(56 76)(57 75)(58 74)(59 73)(60 84)

G:=sub<Sym(96)| (1,40,33,68)(2,69,34,41)(3,42,35,70)(4,71,36,43)(5,44,25,72)(6,61,26,45)(7,46,27,62)(8,63,28,47)(9,48,29,64)(10,65,30,37)(11,38,31,66)(12,67,32,39)(13,73,57,86)(14,87,58,74)(15,75,59,88)(16,89,60,76)(17,77,49,90)(18,91,50,78)(19,79,51,92)(20,93,52,80)(21,81,53,94)(22,95,54,82)(23,83,55,96)(24,85,56,84), (1,57)(2,87)(3,59)(4,89)(5,49)(6,91)(7,51)(8,93)(9,53)(10,95)(11,55)(12,85)(13,33)(14,69)(15,35)(16,71)(17,25)(18,61)(19,27)(20,63)(21,29)(22,65)(23,31)(24,67)(26,78)(28,80)(30,82)(32,84)(34,74)(36,76)(37,54)(38,83)(39,56)(40,73)(41,58)(42,75)(43,60)(44,77)(45,50)(46,79)(47,52)(48,81)(62,92)(64,94)(66,96)(68,86)(70,88)(72,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,88)(14,87)(15,86)(16,85)(17,96)(18,95)(19,94)(20,93)(21,92)(22,91)(23,90)(24,89)(25,31)(26,30)(27,29)(32,36)(33,35)(37,61)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,83)(50,82)(51,81)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,84)>;

G:=Group( (1,40,33,68)(2,69,34,41)(3,42,35,70)(4,71,36,43)(5,44,25,72)(6,61,26,45)(7,46,27,62)(8,63,28,47)(9,48,29,64)(10,65,30,37)(11,38,31,66)(12,67,32,39)(13,73,57,86)(14,87,58,74)(15,75,59,88)(16,89,60,76)(17,77,49,90)(18,91,50,78)(19,79,51,92)(20,93,52,80)(21,81,53,94)(22,95,54,82)(23,83,55,96)(24,85,56,84), (1,57)(2,87)(3,59)(4,89)(5,49)(6,91)(7,51)(8,93)(9,53)(10,95)(11,55)(12,85)(13,33)(14,69)(15,35)(16,71)(17,25)(18,61)(19,27)(20,63)(21,29)(22,65)(23,31)(24,67)(26,78)(28,80)(30,82)(32,84)(34,74)(36,76)(37,54)(38,83)(39,56)(40,73)(41,58)(42,75)(43,60)(44,77)(45,50)(46,79)(47,52)(48,81)(62,92)(64,94)(66,96)(68,86)(70,88)(72,90), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,88)(14,87)(15,86)(16,85)(17,96)(18,95)(19,94)(20,93)(21,92)(22,91)(23,90)(24,89)(25,31)(26,30)(27,29)(32,36)(33,35)(37,61)(38,72)(39,71)(40,70)(41,69)(42,68)(43,67)(44,66)(45,65)(46,64)(47,63)(48,62)(49,83)(50,82)(51,81)(52,80)(53,79)(54,78)(55,77)(56,76)(57,75)(58,74)(59,73)(60,84) );

G=PermutationGroup([[(1,40,33,68),(2,69,34,41),(3,42,35,70),(4,71,36,43),(5,44,25,72),(6,61,26,45),(7,46,27,62),(8,63,28,47),(9,48,29,64),(10,65,30,37),(11,38,31,66),(12,67,32,39),(13,73,57,86),(14,87,58,74),(15,75,59,88),(16,89,60,76),(17,77,49,90),(18,91,50,78),(19,79,51,92),(20,93,52,80),(21,81,53,94),(22,95,54,82),(23,83,55,96),(24,85,56,84)], [(1,57),(2,87),(3,59),(4,89),(5,49),(6,91),(7,51),(8,93),(9,53),(10,95),(11,55),(12,85),(13,33),(14,69),(15,35),(16,71),(17,25),(18,61),(19,27),(20,63),(21,29),(22,65),(23,31),(24,67),(26,78),(28,80),(30,82),(32,84),(34,74),(36,76),(37,54),(38,83),(39,56),(40,73),(41,58),(42,75),(43,60),(44,77),(45,50),(46,79),(47,52),(48,81),(62,92),(64,94),(66,96),(68,86),(70,88),(72,90)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,88),(14,87),(15,86),(16,85),(17,96),(18,95),(19,94),(20,93),(21,92),(22,91),(23,90),(24,89),(25,31),(26,30),(27,29),(32,36),(33,35),(37,61),(38,72),(39,71),(40,70),(41,69),(42,68),(43,67),(44,66),(45,65),(46,64),(47,63),(48,62),(49,83),(50,82),(51,81),(52,80),(53,79),(54,78),(55,77),(56,76),(57,75),(58,74),(59,73),(60,84)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222222344444446666688881212121224242424
size111144122422266812122228844121244884444

33 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6D12C4○D8C8⋊C22S3×D4S3×D4D8⋊S3Q8.7D6
kernelD43D12C6.SD16D6⋊C8C3×D4⋊C4C12⋊D4C2×C24⋊C2C2×D4⋊S3C2×D42S3D4⋊C4Dic6C2×Dic3C3×D4C22×S3C4⋊C4C2×C8C2×D4D4C6C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of D43D12 in GL4(𝔽73) generated by

727100
1100
0010
0001
,
323200
574100
00720
00072
,
461900
02700
001466
0077
,
72000
1100
00721
0001
G:=sub<GL(4,GF(73))| [72,1,0,0,71,1,0,0,0,0,1,0,0,0,0,1],[32,57,0,0,32,41,0,0,0,0,72,0,0,0,0,72],[46,0,0,0,19,27,0,0,0,0,14,7,0,0,66,7],[72,1,0,0,0,1,0,0,0,0,72,0,0,0,1,1] >;

D43D12 in GAP, Magma, Sage, TeX

D_4\rtimes_3D_{12}
% in TeX

G:=Group("D4:3D12");
// GroupNames label

G:=SmallGroup(192,340);
// by ID

G=gap.SmallGroup(192,340);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,254,219,58,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=d^2=1,b*a*b=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽