Copied to
clipboard

G = Q84D12order 192 = 26·3

2nd semidirect product of Q8 and D12 acting via D12/D6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D124D4, Q84D12, D6⋊C88C2, (C3×Q8)⋊2D4, (C2×D24)⋊6C2, C4⋊C4.27D6, C4.8(C2×D12), (C2×C8).17D6, C4.95(S3×D4), C12⋊D45C2, C33(D4⋊D4), Q8⋊C45S3, C6.26C22≀C2, C6.70(C4○D8), C12.124(C2×D4), C6.D812C2, (C2×Q8).134D6, C2.16(Q83D6), C6.62(C8⋊C22), (C2×C24).17C22, (C22×S3).18D4, C22.200(S3×D4), (C6×Q8).33C22, C2.29(D6⋊D4), C2.9(D24⋊C2), (C2×C12).250C23, (C2×Dic3).155D4, (C2×D12).65C22, (C2×Q82S3)⋊4C2, (C3×Q8⋊C4)⋊5C2, (C2×Q83S3)⋊1C2, (C2×C6).263(C2×D4), (C2×C3⋊C8).41C22, (S3×C2×C4).23C22, (C3×C4⋊C4).51C22, (C2×C4).357(C22×S3), SmallGroup(192,369)

Series: Derived Chief Lower central Upper central

C1C2×C12 — Q84D12
C1C3C6C12C2×C12S3×C2×C4C12⋊D4 — Q84D12
C3C6C2×C12 — Q84D12
C1C22C2×C4Q8⋊C4

Generators and relations for Q84D12
 G = < a,b,c,d | a4=c12=d2=1, b2=a2, bab-1=cac-1=dad=a-1, cbc-1=a-1b, dbd=ab, dcd=c-1 >

Subgroups: 584 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, SD16, C22×C4, C2×D4, C2×Q8, C4○D4, C3⋊C8, C24, C4×S3, D12, D12, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C22×S3, C22×S3, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊D4, C2×D8, C2×SD16, C2×C4○D4, D24, C2×C3⋊C8, D6⋊C4, Q82S3, C3×C4⋊C4, C2×C24, S3×C2×C4, S3×C2×C4, C2×D12, C2×D12, Q83S3, C6×Q8, D4⋊D4, C6.D8, D6⋊C8, C3×Q8⋊C4, C12⋊D4, C2×D24, C2×Q82S3, C2×Q83S3, Q84D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C4○D8, C8⋊C22, C2×D12, S3×D4, D4⋊D4, D6⋊D4, Q83D6, D24⋊C2, Q84D12

Smallest permutation representation of Q84D12
On 96 points
Generators in S96
(1 14 85 64)(2 65 86 15)(3 16 87 66)(4 67 88 17)(5 18 89 68)(6 69 90 19)(7 20 91 70)(8 71 92 21)(9 22 93 72)(10 61 94 23)(11 24 95 62)(12 63 96 13)(25 81 57 46)(26 47 58 82)(27 83 59 48)(28 37 60 84)(29 73 49 38)(30 39 50 74)(31 75 51 40)(32 41 52 76)(33 77 53 42)(34 43 54 78)(35 79 55 44)(36 45 56 80)
(1 45 85 80)(2 57 86 25)(3 47 87 82)(4 59 88 27)(5 37 89 84)(6 49 90 29)(7 39 91 74)(8 51 92 31)(9 41 93 76)(10 53 94 33)(11 43 95 78)(12 55 96 35)(13 44 63 79)(14 36 64 56)(15 46 65 81)(16 26 66 58)(17 48 67 83)(18 28 68 60)(19 38 69 73)(20 30 70 50)(21 40 71 75)(22 32 72 52)(23 42 61 77)(24 34 62 54)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 67)(14 66)(15 65)(16 64)(17 63)(18 62)(19 61)(20 72)(21 71)(22 70)(23 69)(24 68)(25 46)(26 45)(27 44)(28 43)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 48)(36 47)(49 77)(50 76)(51 75)(52 74)(53 73)(54 84)(55 83)(56 82)(57 81)(58 80)(59 79)(60 78)(85 87)(88 96)(89 95)(90 94)(91 93)

G:=sub<Sym(96)| (1,14,85,64)(2,65,86,15)(3,16,87,66)(4,67,88,17)(5,18,89,68)(6,69,90,19)(7,20,91,70)(8,71,92,21)(9,22,93,72)(10,61,94,23)(11,24,95,62)(12,63,96,13)(25,81,57,46)(26,47,58,82)(27,83,59,48)(28,37,60,84)(29,73,49,38)(30,39,50,74)(31,75,51,40)(32,41,52,76)(33,77,53,42)(34,43,54,78)(35,79,55,44)(36,45,56,80), (1,45,85,80)(2,57,86,25)(3,47,87,82)(4,59,88,27)(5,37,89,84)(6,49,90,29)(7,39,91,74)(8,51,92,31)(9,41,93,76)(10,53,94,33)(11,43,95,78)(12,55,96,35)(13,44,63,79)(14,36,64,56)(15,46,65,81)(16,26,66,58)(17,48,67,83)(18,28,68,60)(19,38,69,73)(20,30,70,50)(21,40,71,75)(22,32,72,52)(23,42,61,77)(24,34,62,54), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,67)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,72)(21,71)(22,70)(23,69)(24,68)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,48)(36,47)(49,77)(50,76)(51,75)(52,74)(53,73)(54,84)(55,83)(56,82)(57,81)(58,80)(59,79)(60,78)(85,87)(88,96)(89,95)(90,94)(91,93)>;

G:=Group( (1,14,85,64)(2,65,86,15)(3,16,87,66)(4,67,88,17)(5,18,89,68)(6,69,90,19)(7,20,91,70)(8,71,92,21)(9,22,93,72)(10,61,94,23)(11,24,95,62)(12,63,96,13)(25,81,57,46)(26,47,58,82)(27,83,59,48)(28,37,60,84)(29,73,49,38)(30,39,50,74)(31,75,51,40)(32,41,52,76)(33,77,53,42)(34,43,54,78)(35,79,55,44)(36,45,56,80), (1,45,85,80)(2,57,86,25)(3,47,87,82)(4,59,88,27)(5,37,89,84)(6,49,90,29)(7,39,91,74)(8,51,92,31)(9,41,93,76)(10,53,94,33)(11,43,95,78)(12,55,96,35)(13,44,63,79)(14,36,64,56)(15,46,65,81)(16,26,66,58)(17,48,67,83)(18,28,68,60)(19,38,69,73)(20,30,70,50)(21,40,71,75)(22,32,72,52)(23,42,61,77)(24,34,62,54), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,3)(4,12)(5,11)(6,10)(7,9)(13,67)(14,66)(15,65)(16,64)(17,63)(18,62)(19,61)(20,72)(21,71)(22,70)(23,69)(24,68)(25,46)(26,45)(27,44)(28,43)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,48)(36,47)(49,77)(50,76)(51,75)(52,74)(53,73)(54,84)(55,83)(56,82)(57,81)(58,80)(59,79)(60,78)(85,87)(88,96)(89,95)(90,94)(91,93) );

G=PermutationGroup([[(1,14,85,64),(2,65,86,15),(3,16,87,66),(4,67,88,17),(5,18,89,68),(6,69,90,19),(7,20,91,70),(8,71,92,21),(9,22,93,72),(10,61,94,23),(11,24,95,62),(12,63,96,13),(25,81,57,46),(26,47,58,82),(27,83,59,48),(28,37,60,84),(29,73,49,38),(30,39,50,74),(31,75,51,40),(32,41,52,76),(33,77,53,42),(34,43,54,78),(35,79,55,44),(36,45,56,80)], [(1,45,85,80),(2,57,86,25),(3,47,87,82),(4,59,88,27),(5,37,89,84),(6,49,90,29),(7,39,91,74),(8,51,92,31),(9,41,93,76),(10,53,94,33),(11,43,95,78),(12,55,96,35),(13,44,63,79),(14,36,64,56),(15,46,65,81),(16,26,66,58),(17,48,67,83),(18,28,68,60),(19,38,69,73),(20,30,70,50),(21,40,71,75),(22,32,72,52),(23,42,61,77),(24,34,62,54)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,67),(14,66),(15,65),(16,64),(17,63),(18,62),(19,61),(20,72),(21,71),(22,70),(23,69),(24,68),(25,46),(26,45),(27,44),(28,43),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,48),(36,47),(49,77),(50,76),(51,75),(52,74),(53,73),(54,84),(55,83),(56,82),(57,81),(58,80),(59,79),(60,78),(85,87),(88,96),(89,95),(90,94),(91,93)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C8A8B8C8D12A12B12C12D12E12F24A24B24C24D
order1222222234444444666888812121212121224242424
size111112121224222446682224412124488884444

33 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6D12C4○D8C8⋊C22S3×D4S3×D4Q83D6D24⋊C2
kernelQ84D12C6.D8D6⋊C8C3×Q8⋊C4C12⋊D4C2×D24C2×Q82S3C2×Q83S3Q8⋊C4D12C2×Dic3C3×Q8C22×S3C4⋊C4C2×C8C2×Q8Q8C6C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of Q84D12 in GL4(𝔽73) generated by

0100
72000
0010
0001
,
67600
6600
00720
00072
,
04600
46000
00597
006666
,
72000
0100
00721
0001
G:=sub<GL(4,GF(73))| [0,72,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[67,6,0,0,6,6,0,0,0,0,72,0,0,0,0,72],[0,46,0,0,46,0,0,0,0,0,59,66,0,0,7,66],[72,0,0,0,0,1,0,0,0,0,72,0,0,0,1,1] >;

Q84D12 in GAP, Magma, Sage, TeX

Q_8\rtimes_4D_{12}
% in TeX

G:=Group("Q8:4D12");
// GroupNames label

G:=SmallGroup(192,369);
// by ID

G=gap.SmallGroup(192,369);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,758,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=c^12=d^2=1,b^2=a^2,b*a*b^-1=c*a*c^-1=d*a*d=a^-1,c*b*c^-1=a^-1*b,d*b*d=a*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽