Copied to
clipboard

G = D12:7D4order 192 = 26·3

7th semidirect product of D12 and D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D12:7D4, (C3xQ8):6D4, D6:C8:34C2, C4.64(S3xD4), D6:3D4:7C2, C3:6(D4:D4), Q8:4(C3:D4), (C2xD4).74D6, C12.49(C2xD4), (C2xC8).148D6, C6.59C22wrC2, (C6xSD16):22C2, (C2xSD16):13S3, C6.64(C4oD8), C2.D24:36C2, (C2xQ8).141D6, Q8:2Dic3:30C2, C2.29(Q8:3D6), C6.79(C8:C22), (C22xS3).37D4, (C6xD4).98C22, C22.269(S3xD4), (C6xQ8).78C22, C2.27(C23:2D6), (C2xC12).449C23, (C2xC24).295C22, (C2xDic3).184D4, C2.30(Q8.7D6), (C2xD12).121C22, C4:Dic3.176C22, (C2xD4:S3):20C2, C4.44(C2xC3:D4), (C2xQ8:3S3):2C2, (C2xC6).361(C2xD4), (S3xC2xC4).49C22, (C2xC3:C8).158C22, (C2xC4).538(C22xS3), SmallGroup(192,731)

Series: Derived Chief Lower central Upper central

C1C2xC12 — D12:7D4
C1C3C6C12C2xC12S3xC2xC4D6:3D4 — D12:7D4
C3C6C2xC12 — D12:7D4
C1C22C2xC4C2xSD16

Generators and relations for D12:7D4
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=cac-1=a-1, dad=a7, cbc-1=a7b, dbd=a9b, dcd=c-1 >

Subgroups: 536 in 162 conjugacy classes, 43 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2xC6, C2xC6, C22:C4, C4:C4, C2xC8, C2xC8, D8, SD16, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C3:C8, C24, C4xS3, D12, D12, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C3xD4, C3xQ8, C3xQ8, C22xS3, C22xS3, C22xC6, C22:C8, D4:C4, Q8:C4, C4:D4, C2xD8, C2xSD16, C2xC4oD4, C2xC3:C8, C4:Dic3, D4:S3, C6.D4, C2xC24, C3xSD16, S3xC2xC4, S3xC2xC4, C2xD12, C2xD12, Q8:3S3, C2xC3:D4, C6xD4, C6xQ8, D4:D4, D6:C8, C2.D24, Q8:2Dic3, C2xD4:S3, D6:3D4, C6xSD16, C2xQ8:3S3, D12:7D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C3:D4, C22xS3, C22wrC2, C4oD8, C8:C22, S3xD4, C2xC3:D4, D4:D4, Q8:3D6, Q8.7D6, C23:2D6, D12:7D4

Smallest permutation representation of D12:7D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 19)(14 18)(15 17)(20 24)(21 23)(25 26)(27 36)(28 35)(29 34)(30 33)(31 32)(37 48)(38 47)(39 46)(40 45)(41 44)(42 43)(49 56)(50 55)(51 54)(52 53)(57 60)(58 59)(61 69)(62 68)(63 67)(64 66)(70 72)(73 83)(74 82)(75 81)(76 80)(77 79)(85 87)(88 96)(89 95)(90 94)(91 93)
(1 94 32 18)(2 93 33 17)(3 92 34 16)(4 91 35 15)(5 90 36 14)(6 89 25 13)(7 88 26 24)(8 87 27 23)(9 86 28 22)(10 85 29 21)(11 96 30 20)(12 95 31 19)(37 74 53 67)(38 73 54 66)(39 84 55 65)(40 83 56 64)(41 82 57 63)(42 81 58 62)(43 80 59 61)(44 79 60 72)(45 78 49 71)(46 77 50 70)(47 76 51 69)(48 75 52 68)
(1 77)(2 84)(3 79)(4 74)(5 81)(6 76)(7 83)(8 78)(9 73)(10 80)(11 75)(12 82)(13 51)(14 58)(15 53)(16 60)(17 55)(18 50)(19 57)(20 52)(21 59)(22 54)(23 49)(24 56)(25 69)(26 64)(27 71)(28 66)(29 61)(30 68)(31 63)(32 70)(33 65)(34 72)(35 67)(36 62)(37 91)(38 86)(39 93)(40 88)(41 95)(42 90)(43 85)(44 92)(45 87)(46 94)(47 89)(48 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,19)(14,18)(15,17)(20,24)(21,23)(25,26)(27,36)(28,35)(29,34)(30,33)(31,32)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,69)(62,68)(63,67)(64,66)(70,72)(73,83)(74,82)(75,81)(76,80)(77,79)(85,87)(88,96)(89,95)(90,94)(91,93), (1,94,32,18)(2,93,33,17)(3,92,34,16)(4,91,35,15)(5,90,36,14)(6,89,25,13)(7,88,26,24)(8,87,27,23)(9,86,28,22)(10,85,29,21)(11,96,30,20)(12,95,31,19)(37,74,53,67)(38,73,54,66)(39,84,55,65)(40,83,56,64)(41,82,57,63)(42,81,58,62)(43,80,59,61)(44,79,60,72)(45,78,49,71)(46,77,50,70)(47,76,51,69)(48,75,52,68), (1,77)(2,84)(3,79)(4,74)(5,81)(6,76)(7,83)(8,78)(9,73)(10,80)(11,75)(12,82)(13,51)(14,58)(15,53)(16,60)(17,55)(18,50)(19,57)(20,52)(21,59)(22,54)(23,49)(24,56)(25,69)(26,64)(27,71)(28,66)(29,61)(30,68)(31,63)(32,70)(33,65)(34,72)(35,67)(36,62)(37,91)(38,86)(39,93)(40,88)(41,95)(42,90)(43,85)(44,92)(45,87)(46,94)(47,89)(48,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,19)(14,18)(15,17)(20,24)(21,23)(25,26)(27,36)(28,35)(29,34)(30,33)(31,32)(37,48)(38,47)(39,46)(40,45)(41,44)(42,43)(49,56)(50,55)(51,54)(52,53)(57,60)(58,59)(61,69)(62,68)(63,67)(64,66)(70,72)(73,83)(74,82)(75,81)(76,80)(77,79)(85,87)(88,96)(89,95)(90,94)(91,93), (1,94,32,18)(2,93,33,17)(3,92,34,16)(4,91,35,15)(5,90,36,14)(6,89,25,13)(7,88,26,24)(8,87,27,23)(9,86,28,22)(10,85,29,21)(11,96,30,20)(12,95,31,19)(37,74,53,67)(38,73,54,66)(39,84,55,65)(40,83,56,64)(41,82,57,63)(42,81,58,62)(43,80,59,61)(44,79,60,72)(45,78,49,71)(46,77,50,70)(47,76,51,69)(48,75,52,68), (1,77)(2,84)(3,79)(4,74)(5,81)(6,76)(7,83)(8,78)(9,73)(10,80)(11,75)(12,82)(13,51)(14,58)(15,53)(16,60)(17,55)(18,50)(19,57)(20,52)(21,59)(22,54)(23,49)(24,56)(25,69)(26,64)(27,71)(28,66)(29,61)(30,68)(31,63)(32,70)(33,65)(34,72)(35,67)(36,62)(37,91)(38,86)(39,93)(40,88)(41,95)(42,90)(43,85)(44,92)(45,87)(46,94)(47,89)(48,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,19),(14,18),(15,17),(20,24),(21,23),(25,26),(27,36),(28,35),(29,34),(30,33),(31,32),(37,48),(38,47),(39,46),(40,45),(41,44),(42,43),(49,56),(50,55),(51,54),(52,53),(57,60),(58,59),(61,69),(62,68),(63,67),(64,66),(70,72),(73,83),(74,82),(75,81),(76,80),(77,79),(85,87),(88,96),(89,95),(90,94),(91,93)], [(1,94,32,18),(2,93,33,17),(3,92,34,16),(4,91,35,15),(5,90,36,14),(6,89,25,13),(7,88,26,24),(8,87,27,23),(9,86,28,22),(10,85,29,21),(11,96,30,20),(12,95,31,19),(37,74,53,67),(38,73,54,66),(39,84,55,65),(40,83,56,64),(41,82,57,63),(42,81,58,62),(43,80,59,61),(44,79,60,72),(45,78,49,71),(46,77,50,70),(47,76,51,69),(48,75,52,68)], [(1,77),(2,84),(3,79),(4,74),(5,81),(6,76),(7,83),(8,78),(9,73),(10,80),(11,75),(12,82),(13,51),(14,58),(15,53),(16,60),(17,55),(18,50),(19,57),(20,52),(21,59),(22,54),(23,49),(24,56),(25,69),(26,64),(27,71),(28,66),(29,61),(30,68),(31,63),(32,70),(33,65),(34,72),(35,67),(36,62),(37,91),(38,86),(39,93),(40,88),(41,95),(42,90),(43,85),(44,92),(45,87),(46,94),(47,89),(48,96)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
order12222222344444446666688881212121224242424
size111181212122224466242228844121244884444

33 irreducible representations

dim11111111222222222244444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2S3D4D4D4D4D6D6D6C3:D4C4oD8C8:C22S3xD4S3xD4Q8:3D6Q8.7D6
kernelD12:7D4D6:C8C2.D24Q8:2Dic3C2xD4:S3D6:3D4C6xSD16C2xQ8:3S3C2xSD16D12C2xDic3C3xQ8C22xS3C2xC8C2xD4C2xQ8Q8C6C6C4C22C2C2
# reps11111111121211114411122

Matrix representation of D12:7D4 in GL4(F73) generated by

1100
72000
00722
00721
,
1100
07200
00722
0001
,
431300
433000
00061
00670
,
431300
603000
003241
001641
G:=sub<GL(4,GF(73))| [1,72,0,0,1,0,0,0,0,0,72,72,0,0,2,1],[1,0,0,0,1,72,0,0,0,0,72,0,0,0,2,1],[43,43,0,0,13,30,0,0,0,0,0,67,0,0,61,0],[43,60,0,0,13,30,0,0,0,0,32,16,0,0,41,41] >;

D12:7D4 in GAP, Magma, Sage, TeX

D_{12}\rtimes_7D_4
% in TeX

G:=Group("D12:7D4");
// GroupNames label

G:=SmallGroup(192,731);
// by ID

G=gap.SmallGroup(192,731);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,758,135,184,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=c*a*c^-1=a^-1,d*a*d=a^7,c*b*c^-1=a^7*b,d*b*d=a^9*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<