Extensions 1→N→G→Q→1 with N=S3×D4 and Q=C4

Direct product G=N×Q with N=S3×D4 and Q=C4
dρLabelID
C4×S3×D448C4xS3xD4192,1103

Semidirect products G=N:Q with N=S3×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×D4)⋊1C4 = S3×D4⋊C4φ: C4/C2C2 ⊆ Out S3×D448(S3xD4):1C4192,328
(S3×D4)⋊2C4 = C4⋊C419D6φ: C4/C2C2 ⊆ Out S3×D448(S3xD4):2C4192,329
(S3×D4)⋊3C4 = S3×C4≀C2φ: C4/C2C2 ⊆ Out S3×D4244(S3xD4):3C4192,379
(S3×D4)⋊4C4 = C423D6φ: C4/C2C2 ⊆ Out S3×D4484(S3xD4):4C4192,380
(S3×D4)⋊5C4 = C4213D6φ: C4/C2C2 ⊆ Out S3×D448(S3xD4):5C4192,1104

Non-split extensions G=N.Q with N=S3×D4 and Q=C4
extensionφ:Q→Out NdρLabelID
(S3×D4).C4 = M4(2)⋊28D6φ: C4/C2C2 ⊆ Out S3×D4484(S3xD4).C4192,1309
(S3×D4).2C4 = S3×C8○D4φ: trivial image484(S3xD4).2C4192,1308

׿
×
𝔽