Copied to
clipboard

G = C4xS3xD4order 192 = 26·3

Direct product of C4, S3 and D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4xS3xD4, C42:34D6, C4:C4:55D6, (D4xC12):8C2, C12:13(C2xD4), (C4xD12):23C2, D12:12(C2xC4), (S3xC42):3C2, C12:1(C22xC4), C22:C4:52D6, D6.58(C2xD4), D6:4(C22xC4), (C22xC4):39D6, (C4xC12):15C22, D6:C4:61C22, (D4xDic3):44C2, Dic3:11(C2xD4), (C2xD4).244D6, C6.21(C23xC4), (C2xC6).88C24, Dic3:5D4:46C2, C6.46(C22xD4), D6.35(C4oD4), C4:Dic3:72C22, Dic3:2(C22xC4), Dic3:4D4:51C2, (C2xC12).586C23, Dic3:C4:63C22, (C22xC12):35C22, (C4xDic3):78C22, (C6xD4).252C22, C22.31(S3xC23), (C2xD12).257C22, C6.D4:47C22, C23.177(C22xS3), (C22xC6).158C23, (S3xC23).105C22, (C22xS3).254C23, (C2xDic3).308C23, (C22xDic3):43C22, C3:4(C2xC4xD4), C4:1(S3xC2xC4), C2.5(C2xS3xD4), C22:2(S3xC2xC4), (S3xC4:C4):47C2, (C4xS3):7(C2xC4), C3:D4:2(C2xC4), (C2xS3xD4).11C2, C2.4(S3xC4oD4), (C3xD4):11(C2xC4), (C4xC3:D4):39C2, (S3xC2xC4):69C22, (S3xC22xC4):21C2, (C2xC6):1(C22xC4), C2.23(S3xC22xC4), (C3xC4:C4):55C22, (S3xC22:C4):30C2, C6.138(C2xC4oD4), (C22xS3):12(C2xC4), (C3xC22:C4):62C22, (C2xC4).819(C22xS3), (C2xC3:D4).109C22, SmallGroup(192,1103)

Series: Derived Chief Lower central Upper central

C1C6 — C4xS3xD4
C1C3C6C2xC6C22xS3S3xC23C2xS3xD4 — C4xS3xD4
C3C6 — C4xS3xD4
C1C2xC4C4xD4

Generators and relations for C4xS3xD4
 G = < a,b,c,d,e | a4=b3=c2=d4=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 1032 in 426 conjugacy classes, 169 normal (43 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, S3, S3, C6, C6, C2xC4, C2xC4, C2xC4, D4, D4, C23, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC6, C42, C42, C22:C4, C22:C4, C4:C4, C4:C4, C22xC4, C22xC4, C2xD4, C2xD4, C24, C4xS3, C4xS3, D12, C2xDic3, C2xDic3, C2xDic3, C3:D4, C2xC12, C2xC12, C2xC12, C3xD4, C22xS3, C22xS3, C22xS3, C22xC6, C2xC42, C2xC22:C4, C2xC4:C4, C4xD4, C4xD4, C23xC4, C22xD4, C4xDic3, Dic3:C4, C4:Dic3, D6:C4, C6.D4, C4xC12, C3xC22:C4, C3xC4:C4, S3xC2xC4, S3xC2xC4, S3xC2xC4, C2xD12, S3xD4, C22xDic3, C2xC3:D4, C22xC12, C6xD4, S3xC23, C2xC4xD4, S3xC42, C4xD12, S3xC22:C4, Dic3:4D4, S3xC4:C4, Dic3:5D4, C4xC3:D4, D4xDic3, D4xC12, S3xC22xC4, C2xS3xD4, C4xS3xD4
Quotients: C1, C2, C4, C22, S3, C2xC4, D4, C23, D6, C22xC4, C2xD4, C4oD4, C24, C4xS3, C22xS3, C4xD4, C23xC4, C22xD4, C2xC4oD4, S3xC2xC4, S3xD4, S3xC23, C2xC4xD4, S3xC22xC4, C2xS3xD4, S3xC4oD4, C4xS3xD4

Smallest permutation representation of C4xS3xD4
On 48 points
Generators in S48
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 25 22)(2 26 23)(3 27 24)(4 28 21)(5 29 19)(6 30 20)(7 31 17)(8 32 18)(9 43 37)(10 44 38)(11 41 39)(12 42 40)(13 34 48)(14 35 45)(15 36 46)(16 33 47)
(1 3)(2 4)(5 7)(6 8)(9 41)(10 42)(11 43)(12 44)(13 36)(14 33)(15 34)(16 35)(17 29)(18 30)(19 31)(20 32)(21 26)(22 27)(23 28)(24 25)(37 39)(38 40)(45 47)(46 48)
(1 45 39 6)(2 46 40 7)(3 47 37 8)(4 48 38 5)(9 32 27 16)(10 29 28 13)(11 30 25 14)(12 31 26 15)(17 23 36 42)(18 24 33 43)(19 21 34 44)(20 22 35 41)
(5 48)(6 45)(7 46)(8 47)(13 29)(14 30)(15 31)(16 32)(17 36)(18 33)(19 34)(20 35)

G:=sub<Sym(48)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,25,22)(2,26,23)(3,27,24)(4,28,21)(5,29,19)(6,30,20)(7,31,17)(8,32,18)(9,43,37)(10,44,38)(11,41,39)(12,42,40)(13,34,48)(14,35,45)(15,36,46)(16,33,47), (1,3)(2,4)(5,7)(6,8)(9,41)(10,42)(11,43)(12,44)(13,36)(14,33)(15,34)(16,35)(17,29)(18,30)(19,31)(20,32)(21,26)(22,27)(23,28)(24,25)(37,39)(38,40)(45,47)(46,48), (1,45,39,6)(2,46,40,7)(3,47,37,8)(4,48,38,5)(9,32,27,16)(10,29,28,13)(11,30,25,14)(12,31,26,15)(17,23,36,42)(18,24,33,43)(19,21,34,44)(20,22,35,41), (5,48)(6,45)(7,46)(8,47)(13,29)(14,30)(15,31)(16,32)(17,36)(18,33)(19,34)(20,35)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,25,22)(2,26,23)(3,27,24)(4,28,21)(5,29,19)(6,30,20)(7,31,17)(8,32,18)(9,43,37)(10,44,38)(11,41,39)(12,42,40)(13,34,48)(14,35,45)(15,36,46)(16,33,47), (1,3)(2,4)(5,7)(6,8)(9,41)(10,42)(11,43)(12,44)(13,36)(14,33)(15,34)(16,35)(17,29)(18,30)(19,31)(20,32)(21,26)(22,27)(23,28)(24,25)(37,39)(38,40)(45,47)(46,48), (1,45,39,6)(2,46,40,7)(3,47,37,8)(4,48,38,5)(9,32,27,16)(10,29,28,13)(11,30,25,14)(12,31,26,15)(17,23,36,42)(18,24,33,43)(19,21,34,44)(20,22,35,41), (5,48)(6,45)(7,46)(8,47)(13,29)(14,30)(15,31)(16,32)(17,36)(18,33)(19,34)(20,35) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,25,22),(2,26,23),(3,27,24),(4,28,21),(5,29,19),(6,30,20),(7,31,17),(8,32,18),(9,43,37),(10,44,38),(11,41,39),(12,42,40),(13,34,48),(14,35,45),(15,36,46),(16,33,47)], [(1,3),(2,4),(5,7),(6,8),(9,41),(10,42),(11,43),(12,44),(13,36),(14,33),(15,34),(16,35),(17,29),(18,30),(19,31),(20,32),(21,26),(22,27),(23,28),(24,25),(37,39),(38,40),(45,47),(46,48)], [(1,45,39,6),(2,46,40,7),(3,47,37,8),(4,48,38,5),(9,32,27,16),(10,29,28,13),(11,30,25,14),(12,31,26,15),(17,23,36,42),(18,24,33,43),(19,21,34,44),(20,22,35,41)], [(5,48),(6,45),(7,46),(8,47),(13,29),(14,30),(15,31),(16,32),(17,36),(18,33),(19,34),(20,35)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O 3 4A4B4C4D4E···4L4M4N4O4P4Q···4X6A6B6C6D6E6F6G12A12B12C12D12E···12L
order1222222222222222344444···444444···466666661212121212···12
size1111222233336666211112···233336···6222444422224···4

60 irreducible representations

dim111111111111122222222244
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C4S3D4D6D6D6D6D6C4oD4C4xS3S3xD4S3xC4oD4
kernelC4xS3xD4S3xC42C4xD12S3xC22:C4Dic3:4D4S3xC4:C4Dic3:5D4C4xC3:D4D4xDic3D4xC12S3xC22xC4C2xS3xD4S3xD4C4xD4C4xS3C42C22:C4C4:C4C22xC4C2xD4D6D4C4C2
# reps1112211211211614121214822

Matrix representation of C4xS3xD4 in GL4(F13) generated by

8000
0800
0080
0008
,
1000
0100
001212
0010
,
12000
01200
00120
0011
,
0100
12000
0010
0001
,
1000
01200
0010
0001
G:=sub<GL(4,GF(13))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[1,0,0,0,0,1,0,0,0,0,12,1,0,0,12,0],[12,0,0,0,0,12,0,0,0,0,12,1,0,0,0,1],[0,12,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1] >;

C4xS3xD4 in GAP, Magma, Sage, TeX

C_4\times S_3\times D_4
% in TeX

G:=Group("C4xS3xD4");
// GroupNames label

G:=SmallGroup(192,1103);
// by ID

G=gap.SmallGroup(192,1103);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,80,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^3=c^2=d^4=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<