Copied to
clipboard

G = S3×D4⋊C4order 192 = 26·3

Direct product of S3 and D4⋊C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×D4⋊C4, D6.10D8, D6.5SD16, C4⋊C418D6, (S3×D4)⋊1C4, D45(C4×S3), (C2×C8)⋊25D6, C2.2(S3×D8), D122(C2×C4), C6.21(C2×D8), (C4×S3).37D4, C6.D84C2, C4.154(S3×D4), C2.2(S3×SD16), (C2×C24)⋊27C22, (C2×D4).130D6, C2.D2422C2, C12.103(C2×D4), D4⋊Dic33C2, C12.4(C22×C4), C6.22(C2×SD16), C22.68(S3×D4), C4⋊Dic317C22, (C2×Dic3).88D4, (C6×D4).30C22, (C2×C12).209C23, D6.18(C22⋊C4), (C2×D12).47C22, (C22×S3).104D4, Dic3.6(C22⋊C4), C4.4(S3×C2×C4), (S3×C4⋊C4)⋊1C2, (S3×C2×C8)⋊16C2, (C2×S3×D4).3C2, (C3×D4)⋊2(C2×C4), C31(C2×D4⋊C4), (C3×C4⋊C4)⋊1C22, (C2×C3⋊C8)⋊30C22, (C4×S3).12(C2×C4), (C2×C6).222(C2×D4), C6.16(C2×C22⋊C4), C2.17(S3×C22⋊C4), (C3×D4⋊C4)⋊23C2, (S3×C2×C4).222C22, (C2×C4).316(C22×S3), SmallGroup(192,328)

Series: Derived Chief Lower central Upper central

C1C12 — S3×D4⋊C4
C1C3C6C2×C6C2×C12S3×C2×C4C2×S3×D4 — S3×D4⋊C4
C3C6C12 — S3×D4⋊C4
C1C22C2×C4D4⋊C4

Generators and relations for S3×D4⋊C4
 G = < a,b,c,d,e | a3=b2=c4=d2=e4=1, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, dcd=ece-1=c-1, ede-1=cd >

Subgroups: 712 in 202 conjugacy classes, 63 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, C23, Dic3, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C22×C4, C2×D4, C2×D4, C24, C3⋊C8, C24, C4×S3, C4×S3, D12, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C22×S3, C22×S3, C22×C6, D4⋊C4, D4⋊C4, C2×C4⋊C4, C22×C8, C22×D4, S3×C8, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, C3×C4⋊C4, C2×C24, S3×C2×C4, S3×C2×C4, C2×D12, S3×D4, S3×D4, C2×C3⋊D4, C6×D4, S3×C23, C2×D4⋊C4, C6.D8, C2.D24, D4⋊Dic3, C3×D4⋊C4, S3×C4⋊C4, S3×C2×C8, C2×S3×D4, S3×D4⋊C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, C22⋊C4, D8, SD16, C22×C4, C2×D4, C4×S3, C22×S3, D4⋊C4, C2×C22⋊C4, C2×D8, C2×SD16, S3×C2×C4, S3×D4, C2×D4⋊C4, S3×C22⋊C4, S3×D8, S3×SD16, S3×D4⋊C4

Smallest permutation representation of S3×D4⋊C4
On 48 points
Generators in S48
(1 17 16)(2 18 13)(3 19 14)(4 20 15)(5 45 10)(6 46 11)(7 47 12)(8 48 9)(21 25 30)(22 26 31)(23 27 32)(24 28 29)(33 39 44)(34 40 41)(35 37 42)(36 38 43)
(1 22)(2 23)(3 24)(4 21)(5 39)(6 40)(7 37)(8 38)(9 43)(10 44)(11 41)(12 42)(13 27)(14 28)(15 25)(16 26)(17 31)(18 32)(19 29)(20 30)(33 45)(34 46)(35 47)(36 48)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 21)(2 24)(3 23)(4 22)(5 44)(6 43)(7 42)(8 41)(9 40)(10 39)(11 38)(12 37)(13 29)(14 32)(15 31)(16 30)(17 25)(18 28)(19 27)(20 26)(33 45)(34 48)(35 47)(36 46)
(1 46 22 34)(2 45 23 33)(3 48 24 36)(4 47 21 35)(5 32 44 13)(6 31 41 16)(7 30 42 15)(8 29 43 14)(9 28 38 19)(10 27 39 18)(11 26 40 17)(12 25 37 20)

G:=sub<Sym(48)| (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,39,44)(34,40,41)(35,37,42)(36,38,43), (1,22)(2,23)(3,24)(4,21)(5,39)(6,40)(7,37)(8,38)(9,43)(10,44)(11,41)(12,42)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,45)(34,46)(35,47)(36,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,21)(2,24)(3,23)(4,22)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,29)(14,32)(15,31)(16,30)(17,25)(18,28)(19,27)(20,26)(33,45)(34,48)(35,47)(36,46), (1,46,22,34)(2,45,23,33)(3,48,24,36)(4,47,21,35)(5,32,44,13)(6,31,41,16)(7,30,42,15)(8,29,43,14)(9,28,38,19)(10,27,39,18)(11,26,40,17)(12,25,37,20)>;

G:=Group( (1,17,16)(2,18,13)(3,19,14)(4,20,15)(5,45,10)(6,46,11)(7,47,12)(8,48,9)(21,25,30)(22,26,31)(23,27,32)(24,28,29)(33,39,44)(34,40,41)(35,37,42)(36,38,43), (1,22)(2,23)(3,24)(4,21)(5,39)(6,40)(7,37)(8,38)(9,43)(10,44)(11,41)(12,42)(13,27)(14,28)(15,25)(16,26)(17,31)(18,32)(19,29)(20,30)(33,45)(34,46)(35,47)(36,48), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,21)(2,24)(3,23)(4,22)(5,44)(6,43)(7,42)(8,41)(9,40)(10,39)(11,38)(12,37)(13,29)(14,32)(15,31)(16,30)(17,25)(18,28)(19,27)(20,26)(33,45)(34,48)(35,47)(36,46), (1,46,22,34)(2,45,23,33)(3,48,24,36)(4,47,21,35)(5,32,44,13)(6,31,41,16)(7,30,42,15)(8,29,43,14)(9,28,38,19)(10,27,39,18)(11,26,40,17)(12,25,37,20) );

G=PermutationGroup([[(1,17,16),(2,18,13),(3,19,14),(4,20,15),(5,45,10),(6,46,11),(7,47,12),(8,48,9),(21,25,30),(22,26,31),(23,27,32),(24,28,29),(33,39,44),(34,40,41),(35,37,42),(36,38,43)], [(1,22),(2,23),(3,24),(4,21),(5,39),(6,40),(7,37),(8,38),(9,43),(10,44),(11,41),(12,42),(13,27),(14,28),(15,25),(16,26),(17,31),(18,32),(19,29),(20,30),(33,45),(34,46),(35,47),(36,48)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,21),(2,24),(3,23),(4,22),(5,44),(6,43),(7,42),(8,41),(9,40),(10,39),(11,38),(12,37),(13,29),(14,32),(15,31),(16,30),(17,25),(18,28),(19,27),(20,26),(33,45),(34,48),(35,47),(36,46)], [(1,46,22,34),(2,45,23,33),(3,48,24,36),(4,47,21,35),(5,32,44,13),(6,31,41,16),(7,30,42,15),(8,29,43,14),(9,28,38,19),(10,27,39,18),(11,26,40,17),(12,25,37,20)]])

42 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K 3 4A4B4C4D4E4F4G4H6A6B6C6D6E8A8B8C8D8E8F8G8H12A12B12C12D24A24B24C24D
order12222222222234444444466666888888881212121224242424
size1111333344121222244661212222882222666644884444

42 irreducible representations

dim11111111122222222224444
type+++++++++++++++++++
imageC1C2C2C2C2C2C2C2C4S3D4D4D4D6D6D6D8SD16C4×S3S3×D4S3×D4S3×D8S3×SD16
kernelS3×D4⋊C4C6.D8C2.D24D4⋊Dic3C3×D4⋊C4S3×C4⋊C4S3×C2×C8C2×S3×D4S3×D4D4⋊C4C4×S3C2×Dic3C22×S3C4⋊C4C2×C8C2×D4D6D6D4C4C22C2C2
# reps11111111812111114441122

Matrix representation of S3×D4⋊C4 in GL4(𝔽73) generated by

1000
0100
00072
00172
,
1000
0100
00072
00720
,
07200
1000
0010
0001
,
07200
72000
00720
00072
,
161600
165700
00270
00027
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,72],[1,0,0,0,0,1,0,0,0,0,0,72,0,0,72,0],[0,1,0,0,72,0,0,0,0,0,1,0,0,0,0,1],[0,72,0,0,72,0,0,0,0,0,72,0,0,0,0,72],[16,16,0,0,16,57,0,0,0,0,27,0,0,0,0,27] >;

S3×D4⋊C4 in GAP, Magma, Sage, TeX

S_3\times D_4\rtimes C_4
% in TeX

G:=Group("S3xD4:C4");
// GroupNames label

G:=SmallGroup(192,328);
// by ID

G=gap.SmallGroup(192,328);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,58,851,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^4=d^2=e^4=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e^-1=c^-1,e*d*e^-1=c*d>;
// generators/relations

׿
×
𝔽