Copied to
clipboard

G = S3xC8oD4order 192 = 26·3

Direct product of S3 and C8oD4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3xC8oD4, M4(2):27D6, C12.71C24, C24.53C23, (C2xC8):30D6, (S3xD4).2C4, (S3xQ8).2C4, C8oD12:16C2, C4oD4.58D6, D4.12(C4xS3), C3:C8.36C23, Q8.18(C4xS3), (S3xC8):20C22, D12.C4:14C2, (C2xC24):31C22, D12.20(C2xC4), D4:2S3.2C4, C6.34(C23xC4), C4.70(S3xC23), C8.66(C22xS3), Q8:3S3.2C4, C8:S3:20C22, (S3xM4(2)):12C2, D4.Dic3:14C2, (C4xS3).41C23, C12.38(C22xC4), Dic6.21(C2xC4), D6.15(C22xC4), (C2xC12).513C23, C4oD12.51C22, C4.Dic3:26C22, (C3xM4(2)):32C22, Dic3.15(C22xC4), C3:3(C2xC8oD4), (S3xC2xC8):30C2, C4.38(S3xC2xC4), C22.4(S3xC2xC4), (C3xC8oD4):13C2, (C2xC3:C8):34C22, (S3xC4oD4).5C2, C3:D4.1(C2xC4), C2.35(S3xC22xC4), (C4xS3).18(C2xC4), (C3xD4).16(C2xC4), (C2xC6).4(C22xC4), (C3xQ8).17(C2xC4), (S3xC2xC4).254C22, (C22xS3).47(C2xC4), (C2xC4).606(C22xS3), (C2xDic3).73(C2xC4), (C3xC4oD4).43C22, SmallGroup(192,1308)

Series: Derived Chief Lower central Upper central

C1C6 — S3xC8oD4
C1C3C6C12C4xS3S3xC2xC4S3xC4oD4 — S3xC8oD4
C3C6 — S3xC8oD4
C1C8C8oD4

Generators and relations for S3xC8oD4
 G = < a,b,c,d,e | a3=b2=c8=e2=1, d2=c4, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c4d >

Subgroups: 512 in 266 conjugacy classes, 149 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, D6, C2xC6, C2xC8, C2xC8, M4(2), M4(2), C22xC4, C2xD4, C2xQ8, C4oD4, C4oD4, C3:C8, C3:C8, C24, C24, Dic6, C4xS3, C4xS3, D12, C2xDic3, C3:D4, C2xC12, C3xD4, C3xQ8, C22xS3, C22xC8, C2xM4(2), C8oD4, C8oD4, C2xC4oD4, S3xC8, S3xC8, C8:S3, C2xC3:C8, C4.Dic3, C2xC24, C3xM4(2), S3xC2xC4, C4oD12, S3xD4, D4:2S3, S3xQ8, Q8:3S3, C3xC4oD4, C2xC8oD4, S3xC2xC8, C8oD12, S3xM4(2), D12.C4, D4.Dic3, C3xC8oD4, S3xC4oD4, S3xC8oD4
Quotients: C1, C2, C4, C22, S3, C2xC4, C23, D6, C22xC4, C24, C4xS3, C22xS3, C8oD4, C23xC4, S3xC2xC4, S3xC23, C2xC8oD4, S3xC22xC4, S3xC8oD4

Smallest permutation representation of S3xC8oD4
On 48 points
Generators in S48
(1 26 35)(2 27 36)(3 28 37)(4 29 38)(5 30 39)(6 31 40)(7 32 33)(8 25 34)(9 44 23)(10 45 24)(11 46 17)(12 47 18)(13 48 19)(14 41 20)(15 42 21)(16 43 22)
(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 16 6 12)(3 9 7 13)(4 10 8 14)(17 35 21 39)(18 36 22 40)(19 37 23 33)(20 38 24 34)(25 41 29 45)(26 42 30 46)(27 43 31 47)(28 44 32 48)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(41 45)(42 46)(43 47)(44 48)

G:=sub<Sym(48)| (1,26,35)(2,27,36)(3,28,37)(4,29,38)(5,30,39)(6,31,40)(7,32,33)(8,25,34)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,35,21,39)(18,36,22,40)(19,37,23,33)(20,38,24,34)(25,41,29,45)(26,42,30,46)(27,43,31,47)(28,44,32,48), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48)>;

G:=Group( (1,26,35)(2,27,36)(3,28,37)(4,29,38)(5,30,39)(6,31,40)(7,32,33)(8,25,34)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,35,21,39)(18,36,22,40)(19,37,23,33)(20,38,24,34)(25,41,29,45)(26,42,30,46)(27,43,31,47)(28,44,32,48), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48) );

G=PermutationGroup([[(1,26,35),(2,27,36),(3,28,37),(4,29,38),(5,30,39),(6,31,40),(7,32,33),(8,25,34),(9,44,23),(10,45,24),(11,46,17),(12,47,18),(13,48,19),(14,41,20),(15,42,21),(16,43,22)], [(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,16,6,12),(3,9,7,13),(4,10,8,14),(17,35,21,39),(18,36,22,40),(19,37,23,33),(20,38,24,34),(25,41,29,45),(26,42,30,46),(27,43,31,47),(28,44,32,48)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(41,45),(42,46),(43,47),(44,48)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D8A8B8C8D8E···8J8K8L8M8N8O···8T12A12B12C12D12E24A24B24C24D24E···24J
order122222222234444444444666688888···888888···812121212122424242424···24
size112223366621122233666244411112···233336···62244422224···4

60 irreducible representations

dim11111111111122222224
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D6D6D6C4xS3C4xS3C8oD4S3xC8oD4
kernelS3xC8oD4S3xC2xC8C8oD12S3xM4(2)D12.C4D4.Dic3C3xC8oD4S3xC4oD4S3xD4D4:2S3S3xQ8Q8:3S3C8oD4C2xC8M4(2)C4oD4D4Q8S3C1
# reps13333111662213316284

Matrix representation of S3xC8oD4 in GL4(F73) generated by

07200
17200
0010
0001
,
17200
07200
0010
0001
,
27000
02700
00220
00022
,
72000
07200
00072
0010
,
1000
0100
0010
00072
G:=sub<GL(4,GF(73))| [0,1,0,0,72,72,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,72,72,0,0,0,0,1,0,0,0,0,1],[27,0,0,0,0,27,0,0,0,0,22,0,0,0,0,22],[72,0,0,0,0,72,0,0,0,0,0,1,0,0,72,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,72] >;

S3xC8oD4 in GAP, Magma, Sage, TeX

S_3\times C_8\circ D_4
% in TeX

G:=Group("S3xC8oD4");
// GroupNames label

G:=SmallGroup(192,1308);
// by ID

G=gap.SmallGroup(192,1308);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,80,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^8=e^2=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^4*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<