extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4.S3)⋊1C2 = D12.2D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | 8- | (C2xD4.S3):1C2 | 192,307 |
(C2×D4.S3)⋊2C2 = Dic6⋊2D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):2C2 | 192,321 |
(C2×D4.S3)⋊3C2 = D6⋊5SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | | (C2xD4.S3):3C2 | 192,335 |
(C2×D4.S3)⋊4C2 = D6⋊SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):4C2 | 192,337 |
(C2×D4.S3)⋊5C2 = C3⋊C8⋊1D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):5C2 | 192,339 |
(C2×D4.S3)⋊6C2 = D4.D12 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):6C2 | 192,342 |
(C2×D4.S3)⋊7C2 = D4.1D12 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):7C2 | 192,575 |
(C2×D4.S3)⋊8C2 = D12⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):8C2 | 192,596 |
(C2×D4.S3)⋊9C2 = Dic6⋊17D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):9C2 | 192,599 |
(C2×D4.S3)⋊10C2 = C3⋊C8⋊23D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):10C2 | 192,600 |
(C2×D4.S3)⋊11C2 = C3⋊C8⋊5D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):11C2 | 192,601 |
(C2×D4.S3)⋊12C2 = C42.214D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):12C2 | 192,618 |
(C2×D4.S3)⋊13C2 = C42.74D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):13C2 | 192,633 |
(C2×D4.S3)⋊14C2 = Dic6⋊9D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):14C2 | 192,634 |
(C2×D4.S3)⋊15C2 = C12⋊4SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):15C2 | 192,635 |
(C2×D4.S3)⋊16C2 = (C6×D8).C2 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):16C2 | 192,712 |
(C2×D4.S3)⋊17C2 = C24⋊11D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):17C2 | 192,713 |
(C2×D4.S3)⋊18C2 = C24.22D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):18C2 | 192,714 |
(C2×D4.S3)⋊19C2 = Dic6⋊D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):19C2 | 192,717 |
(C2×D4.S3)⋊20C2 = D6⋊8SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):20C2 | 192,729 |
(C2×D4.S3)⋊21C2 = C24⋊15D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):21C2 | 192,734 |
(C2×D4.S3)⋊22C2 = M4(2).13D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | 8- | (C2xD4.S3):22C2 | 192,759 |
(C2×D4.S3)⋊23C2 = (C3×D4).31D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | | (C2xD4.S3):23C2 | 192,777 |
(C2×D4.S3)⋊24C2 = (C3×D4).32D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):24C2 | 192,798 |
(C2×D4.S3)⋊25C2 = C2×D8⋊S3 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | | (C2xD4.S3):25C2 | 192,1314 |
(C2×D4.S3)⋊26C2 = C2×D8⋊3S3 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):26C2 | 192,1315 |
(C2×D4.S3)⋊27C2 = C2×S3×SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | | (C2xD4.S3):27C2 | 192,1317 |
(C2×D4.S3)⋊28C2 = C2×D4.D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):28C2 | 192,1319 |
(C2×D4.S3)⋊29C2 = D8⋊6D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | 8- | (C2xD4.S3):29C2 | 192,1334 |
(C2×D4.S3)⋊30C2 = C2×D12⋊6C22 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | | (C2xD4.S3):30C2 | 192,1352 |
(C2×D4.S3)⋊31C2 = C2×Q8.14D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3):31C2 | 192,1382 |
(C2×D4.S3)⋊32C2 = D12.33C23 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 48 | 8- | (C2xD4.S3):32C2 | 192,1395 |
(C2×D4.S3)⋊33C2 = C2×Q8.13D6 | φ: trivial image | 96 | | (C2xD4.S3):33C2 | 192,1380 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(C2×D4.S3).1C2 = D4.S3⋊C4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).1C2 | 192,316 |
(C2×D4.S3).2C2 = Dic3⋊6SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).2C2 | 192,317 |
(C2×D4.S3).3C2 = Dic6.D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).3C2 | 192,326 |
(C2×D4.S3).4C2 = C42.51D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).4C2 | 192,577 |
(C2×D4.S3).5C2 = D4.2D12 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).5C2 | 192,578 |
(C2×D4.S3).6C2 = C42.61D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).6C2 | 192,613 |
(C2×D4.S3).7C2 = C42.65D6 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).7C2 | 192,619 |
(C2×D4.S3).8C2 = Dic3⋊3SD16 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).8C2 | 192,721 |
(C2×D4.S3).9C2 = C24.31D4 | φ: C2/C1 → C2 ⊆ Out C2×D4.S3 | 96 | | (C2xD4.S3).9C2 | 192,726 |
(C2×D4.S3).10C2 = C4×D4.S3 | φ: trivial image | 96 | | (C2xD4.S3).10C2 | 192,576 |