Extensions 1→N→G→Q→1 with N=C2×D4.S3 and Q=C2

Direct product G=N×Q with N=C2×D4.S3 and Q=C2
dρLabelID
C22×D4.S396C2^2xD4.S3192,1353

Semidirect products G=N:Q with N=C2×D4.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4.S3)⋊1C2 = D12.2D4φ: C2/C1C2 ⊆ Out C2×D4.S3488-(C2xD4.S3):1C2192,307
(C2×D4.S3)⋊2C2 = Dic62D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):2C2192,321
(C2×D4.S3)⋊3C2 = D65SD16φ: C2/C1C2 ⊆ Out C2×D4.S348(C2xD4.S3):3C2192,335
(C2×D4.S3)⋊4C2 = D6⋊SD16φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):4C2192,337
(C2×D4.S3)⋊5C2 = C3⋊C81D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):5C2192,339
(C2×D4.S3)⋊6C2 = D4.D12φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):6C2192,342
(C2×D4.S3)⋊7C2 = D4.1D12φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):7C2192,575
(C2×D4.S3)⋊8C2 = D1217D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):8C2192,596
(C2×D4.S3)⋊9C2 = Dic617D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):9C2192,599
(C2×D4.S3)⋊10C2 = C3⋊C823D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):10C2192,600
(C2×D4.S3)⋊11C2 = C3⋊C85D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):11C2192,601
(C2×D4.S3)⋊12C2 = C42.214D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):12C2192,618
(C2×D4.S3)⋊13C2 = C42.74D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):13C2192,633
(C2×D4.S3)⋊14C2 = Dic69D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):14C2192,634
(C2×D4.S3)⋊15C2 = C124SD16φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):15C2192,635
(C2×D4.S3)⋊16C2 = (C6×D8).C2φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):16C2192,712
(C2×D4.S3)⋊17C2 = C2411D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):17C2192,713
(C2×D4.S3)⋊18C2 = C24.22D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):18C2192,714
(C2×D4.S3)⋊19C2 = Dic6⋊D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):19C2192,717
(C2×D4.S3)⋊20C2 = D68SD16φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):20C2192,729
(C2×D4.S3)⋊21C2 = C2415D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):21C2192,734
(C2×D4.S3)⋊22C2 = M4(2).13D6φ: C2/C1C2 ⊆ Out C2×D4.S3488-(C2xD4.S3):22C2192,759
(C2×D4.S3)⋊23C2 = (C3×D4).31D4φ: C2/C1C2 ⊆ Out C2×D4.S348(C2xD4.S3):23C2192,777
(C2×D4.S3)⋊24C2 = (C3×D4).32D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):24C2192,798
(C2×D4.S3)⋊25C2 = C2×D8⋊S3φ: C2/C1C2 ⊆ Out C2×D4.S348(C2xD4.S3):25C2192,1314
(C2×D4.S3)⋊26C2 = C2×D83S3φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):26C2192,1315
(C2×D4.S3)⋊27C2 = C2×S3×SD16φ: C2/C1C2 ⊆ Out C2×D4.S348(C2xD4.S3):27C2192,1317
(C2×D4.S3)⋊28C2 = C2×D4.D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):28C2192,1319
(C2×D4.S3)⋊29C2 = D86D6φ: C2/C1C2 ⊆ Out C2×D4.S3488-(C2xD4.S3):29C2192,1334
(C2×D4.S3)⋊30C2 = C2×D126C22φ: C2/C1C2 ⊆ Out C2×D4.S348(C2xD4.S3):30C2192,1352
(C2×D4.S3)⋊31C2 = C2×Q8.14D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3):31C2192,1382
(C2×D4.S3)⋊32C2 = D12.33C23φ: C2/C1C2 ⊆ Out C2×D4.S3488-(C2xD4.S3):32C2192,1395
(C2×D4.S3)⋊33C2 = C2×Q8.13D6φ: trivial image96(C2xD4.S3):33C2192,1380

Non-split extensions G=N.Q with N=C2×D4.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C2×D4.S3).1C2 = D4.S3⋊C4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).1C2192,316
(C2×D4.S3).2C2 = Dic36SD16φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).2C2192,317
(C2×D4.S3).3C2 = Dic6.D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).3C2192,326
(C2×D4.S3).4C2 = C42.51D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).4C2192,577
(C2×D4.S3).5C2 = D4.2D12φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).5C2192,578
(C2×D4.S3).6C2 = C42.61D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).6C2192,613
(C2×D4.S3).7C2 = C42.65D6φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).7C2192,619
(C2×D4.S3).8C2 = Dic33SD16φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).8C2192,721
(C2×D4.S3).9C2 = C24.31D4φ: C2/C1C2 ⊆ Out C2×D4.S396(C2xD4.S3).9C2192,726
(C2×D4.S3).10C2 = C4×D4.S3φ: trivial image96(C2xD4.S3).10C2192,576

׿
×
𝔽