Copied to
clipboard

G = C24.31D4order 192 = 26·3

31st non-split extension by C24 of D4 acting via D4/C2=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.31D4, C3⋊C8.9D4, C24⋊C45C2, C4.23(S3×D4), (C2×C8).89D6, (C2×D4).70D6, C8.3(C3⋊D4), C34(C8.2D4), (C2×Q8).76D6, C12.174(C2×D4), (C2×SD16).2S3, (C6×SD16).2C2, Dic3⋊Q84C2, (C2×Dic12)⋊25C2, C6.29(C41D4), (C2×Dic3).70D4, (C6×D4).93C22, C22.264(S3×D4), (C6×Q8).74C22, C2.20(C123D4), (C2×C12).444C23, (C2×C24).114C22, C23.12D6.6C2, C2.28(D4.D6), C6.48(C8.C22), (C4×Dic3).51C22, (C2×Dic6).125C22, C4.7(C2×C3⋊D4), (C2×C3⋊Q16)⋊17C2, (C2×C6).356(C2×D4), (C2×D4.S3).9C2, (C2×C3⋊C8).156C22, (C2×C4).533(C22×S3), SmallGroup(192,726)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C24.31D4
C1C3C6C12C2×C12C4×Dic3Dic3⋊Q8 — C24.31D4
C3C6C2×C12 — C24.31D4
C1C22C2×C4C2×SD16

Generators and relations for C24.31D4
 G = < a,b,c | a24=b4=1, c2=a12, bab-1=a5, cac-1=a-1, cbc-1=b-1 >

Subgroups: 344 in 124 conjugacy classes, 43 normal (31 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C8, C8, C2×C4, C2×C4, D4, Q8, C23, Dic3, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, SD16, Q16, C2×D4, C2×Q8, C2×Q8, C3⋊C8, C24, Dic6, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C8⋊C4, C4.4D4, C4⋊Q8, C2×SD16, C2×SD16, C2×Q16, Dic12, C2×C3⋊C8, C4×Dic3, Dic3⋊C4, D4.S3, C3⋊Q16, C6.D4, C2×C24, C3×SD16, C2×Dic6, C6×D4, C6×Q8, C8.2D4, C24⋊C4, C2×Dic12, C2×D4.S3, C23.12D6, C2×C3⋊Q16, Dic3⋊Q8, C6×SD16, C24.31D4
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C41D4, C8.C22, S3×D4, C2×C3⋊D4, C8.2D4, D4.D6, C123D4, C24.31D4

Character table of C24.31D4

 class 12A2B2C2D34A4B4C4D4E4F4G6A6B6C6D6E8A8B8C8D12A12B12C12D24A24B24C24D
 size 111182228121224242228844121244884444
ρ1111111111111111111111111111111    trivial
ρ21111-1111-1-1-111111-1-111-1-111-1-11111    linear of order 2
ρ31111-11111111-1111-1-1-1-1-1-11111-1-1-1-1    linear of order 2
ρ411111111-1-1-11-111111-1-11111-1-1-1-1-1-1    linear of order 2
ρ5111111111-1-1-1-11111111-1-111111111    linear of order 2
ρ61111-1111-111-1-1111-1-1111111-1-11111    linear of order 2
ρ71111-11111-1-1-11111-1-1-1-1111111-1-1-1-1    linear of order 2
ρ811111111-111-1111111-1-1-1-111-1-1-1-1-1-1    linear of order 2
ρ92222-2-12220000-1-1-111-2-200-1-1-1-11111    orthogonal lifted from D6
ρ102222-2-122-20000-1-1-1112200-1-111-1-1-1-1    orthogonal lifted from D6
ρ112-2-2202-2200000-2-2200-22002-20022-2-2    orthogonal lifted from D4
ρ12222202-2-202-200222000000-2-2000000    orthogonal lifted from D4
ρ13222202-2-20-2200222000000-2-2000000    orthogonal lifted from D4
ρ142-2-2202-2200000-2-22002-2002-200-2-222    orthogonal lifted from D4
ρ1522222-12220000-1-1-1-1-12200-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1622222-122-20000-1-1-1-1-1-2-200-1-1111111    orthogonal lifted from D6
ρ172-2-22022-200000-2-220000-22-22000000    orthogonal lifted from D4
ρ182-2-22022-200000-2-2200002-2-22000000    orthogonal lifted from D4
ρ192-2-220-1-220000011-1--3-32-200-11--3-311-1-1    complex lifted from C3⋊D4
ρ202-2-220-1-220000011-1--3-3-2200-11-3--3-1-111    complex lifted from C3⋊D4
ρ212-2-220-1-220000011-1-3--3-2200-11--3-3-1-111    complex lifted from C3⋊D4
ρ222-2-220-1-220000011-1-3--32-200-11-3--311-1-1    complex lifted from C3⋊D4
ρ234-4-440-24-40000022-20000002-2000000    orthogonal lifted from S3×D4
ρ2444440-2-4-400000-2-2-200000022000000    orthogonal lifted from S3×D4
ρ254-44-4040000000-44-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ2644-4-40400000004-4-400000000000000    symplectic lifted from C8.C22, Schur index 2
ρ274-44-40-200000002-2200000000006-6-66    symplectic lifted from D4.D6, Schur index 2
ρ2844-4-40-20000000-2220000000000-66-66    symplectic lifted from D4.D6, Schur index 2
ρ2944-4-40-20000000-22200000000006-66-6    symplectic lifted from D4.D6, Schur index 2
ρ304-44-40-200000002-220000000000-666-6    symplectic lifted from D4.D6, Schur index 2

Smallest permutation representation of C24.31D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 55 38 80)(2 60 39 85)(3 65 40 90)(4 70 41 95)(5 51 42 76)(6 56 43 81)(7 61 44 86)(8 66 45 91)(9 71 46 96)(10 52 47 77)(11 57 48 82)(12 62 25 87)(13 67 26 92)(14 72 27 73)(15 53 28 78)(16 58 29 83)(17 63 30 88)(18 68 31 93)(19 49 32 74)(20 54 33 79)(21 59 34 84)(22 64 35 89)(23 69 36 94)(24 50 37 75)
(1 95 13 83)(2 94 14 82)(3 93 15 81)(4 92 16 80)(5 91 17 79)(6 90 18 78)(7 89 19 77)(8 88 20 76)(9 87 21 75)(10 86 22 74)(11 85 23 73)(12 84 24 96)(25 59 37 71)(26 58 38 70)(27 57 39 69)(28 56 40 68)(29 55 41 67)(30 54 42 66)(31 53 43 65)(32 52 44 64)(33 51 45 63)(34 50 46 62)(35 49 47 61)(36 72 48 60)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,55,38,80)(2,60,39,85)(3,65,40,90)(4,70,41,95)(5,51,42,76)(6,56,43,81)(7,61,44,86)(8,66,45,91)(9,71,46,96)(10,52,47,77)(11,57,48,82)(12,62,25,87)(13,67,26,92)(14,72,27,73)(15,53,28,78)(16,58,29,83)(17,63,30,88)(18,68,31,93)(19,49,32,74)(20,54,33,79)(21,59,34,84)(22,64,35,89)(23,69,36,94)(24,50,37,75), (1,95,13,83)(2,94,14,82)(3,93,15,81)(4,92,16,80)(5,91,17,79)(6,90,18,78)(7,89,19,77)(8,88,20,76)(9,87,21,75)(10,86,22,74)(11,85,23,73)(12,84,24,96)(25,59,37,71)(26,58,38,70)(27,57,39,69)(28,56,40,68)(29,55,41,67)(30,54,42,66)(31,53,43,65)(32,52,44,64)(33,51,45,63)(34,50,46,62)(35,49,47,61)(36,72,48,60)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,55,38,80)(2,60,39,85)(3,65,40,90)(4,70,41,95)(5,51,42,76)(6,56,43,81)(7,61,44,86)(8,66,45,91)(9,71,46,96)(10,52,47,77)(11,57,48,82)(12,62,25,87)(13,67,26,92)(14,72,27,73)(15,53,28,78)(16,58,29,83)(17,63,30,88)(18,68,31,93)(19,49,32,74)(20,54,33,79)(21,59,34,84)(22,64,35,89)(23,69,36,94)(24,50,37,75), (1,95,13,83)(2,94,14,82)(3,93,15,81)(4,92,16,80)(5,91,17,79)(6,90,18,78)(7,89,19,77)(8,88,20,76)(9,87,21,75)(10,86,22,74)(11,85,23,73)(12,84,24,96)(25,59,37,71)(26,58,38,70)(27,57,39,69)(28,56,40,68)(29,55,41,67)(30,54,42,66)(31,53,43,65)(32,52,44,64)(33,51,45,63)(34,50,46,62)(35,49,47,61)(36,72,48,60) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,55,38,80),(2,60,39,85),(3,65,40,90),(4,70,41,95),(5,51,42,76),(6,56,43,81),(7,61,44,86),(8,66,45,91),(9,71,46,96),(10,52,47,77),(11,57,48,82),(12,62,25,87),(13,67,26,92),(14,72,27,73),(15,53,28,78),(16,58,29,83),(17,63,30,88),(18,68,31,93),(19,49,32,74),(20,54,33,79),(21,59,34,84),(22,64,35,89),(23,69,36,94),(24,50,37,75)], [(1,95,13,83),(2,94,14,82),(3,93,15,81),(4,92,16,80),(5,91,17,79),(6,90,18,78),(7,89,19,77),(8,88,20,76),(9,87,21,75),(10,86,22,74),(11,85,23,73),(12,84,24,96),(25,59,37,71),(26,58,38,70),(27,57,39,69),(28,56,40,68),(29,55,41,67),(30,54,42,66),(31,53,43,65),(32,52,44,64),(33,51,45,63),(34,50,46,62),(35,49,47,61),(36,72,48,60)]])

Matrix representation of C24.31D4 in GL8(𝔽73)

68548500000
686348480000
13710680000
371550000
000000685
0000006863
00003934568
0000395510
,
67843700000
14670330000
562565670000
25425980000
000048112322
000036257250
000025622562
000037483748
,
5550000000
6818000000
0050180000
0068230000
0000001613
0000007057
000084300
0000356500

G:=sub<GL(8,GF(73))| [68,68,1,37,0,0,0,0,5,63,37,1,0,0,0,0,48,48,10,5,0,0,0,0,50,48,68,5,0,0,0,0,0,0,0,0,0,0,39,39,0,0,0,0,0,0,34,5,0,0,0,0,68,68,5,5,0,0,0,0,5,63,68,10],[67,14,56,25,0,0,0,0,8,6,25,42,0,0,0,0,43,70,65,59,0,0,0,0,70,33,67,8,0,0,0,0,0,0,0,0,48,36,25,37,0,0,0,0,11,25,62,48,0,0,0,0,23,72,25,37,0,0,0,0,22,50,62,48],[55,68,0,0,0,0,0,0,50,18,0,0,0,0,0,0,0,0,50,68,0,0,0,0,0,0,18,23,0,0,0,0,0,0,0,0,0,0,8,35,0,0,0,0,0,0,43,65,0,0,0,0,16,70,0,0,0,0,0,0,13,57,0,0] >;

C24.31D4 in GAP, Magma, Sage, TeX

C_{24}._{31}D_4
% in TeX

G:=Group("C24.31D4");
// GroupNames label

G:=SmallGroup(192,726);
// by ID

G=gap.SmallGroup(192,726);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,253,232,1094,135,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^24=b^4=1,c^2=a^12,b*a*b^-1=a^5,c*a*c^-1=a^-1,c*b*c^-1=b^-1>;
// generators/relations

Export

Character table of C24.31D4 in TeX

׿
×
𝔽