Copied to
clipboard

G = Dic6:9D4order 192 = 26·3

2nd semidirect product of Dic6 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6:9D4, C12:3SD16, C42.75D6, C4.54(S3xD4), C4:2(D4.S3), (C2xD4).58D6, C12:C8:32C2, C3:4(C4:SD16), C4:1D4.6S3, C12.33(C2xD4), (C4xDic6):22C2, (C2xC12).149D4, C6.58(C2xSD16), C12.77(C4oD4), C4.4(D4:2S3), D4:Dic3:23C2, C6.96(C8:C22), (C6xD4).74C22, C2.13(D6:3D4), C6.104(C4:D4), (C2xC12).393C23, (C4xC12).123C22, C2.17(D12:6C22), C4:Dic3.345C22, (C2xDic6).274C22, (C2xD4.S3):14C2, (C3xC4:1D4).4C2, (C2xC6).524(C2xD4), C2.12(C2xD4.S3), (C2xC3:C8).132C22, (C2xC4).186(C3:D4), (C2xC4).491(C22xS3), C22.197(C2xC3:D4), SmallGroup(192,634)

Series: Derived Chief Lower central Upper central

C1C2xC12 — Dic6:9D4
C1C3C6C12C2xC12C2xDic6C4xDic6 — Dic6:9D4
C3C6C2xC12 — Dic6:9D4
C1C22C42C4:1D4

Generators and relations for Dic6:9D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=a-1, ac=ca, dad=a7, bc=cb, dbd=a9b, dcd=c-1 >

Subgroups: 352 in 128 conjugacy classes, 45 normal (29 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, C12, C2xC6, C2xC6, C42, C42, C4:C4, C2xC8, SD16, C2xD4, C2xD4, C2xQ8, C3:C8, Dic6, Dic6, C2xDic3, C2xC12, C3xD4, C22xC6, D4:C4, C4:C8, C4xQ8, C4:1D4, C2xSD16, C2xC3:C8, C4xDic3, Dic3:C4, C4:Dic3, D4.S3, C4xC12, C2xDic6, C6xD4, C6xD4, C4:SD16, C12:C8, D4:Dic3, C4xDic6, C2xD4.S3, C3xC4:1D4, Dic6:9D4
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2xD4, C4oD4, C3:D4, C22xS3, C4:D4, C2xSD16, C8:C22, D4.S3, S3xD4, D4:2S3, C2xC3:D4, C4:SD16, D12:6C22, C2xD4.S3, D6:3D4, Dic6:9D4

Smallest permutation representation of Dic6:9D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 33 7 27)(2 32 8 26)(3 31 9 25)(4 30 10 36)(5 29 11 35)(6 28 12 34)(13 71 19 65)(14 70 20 64)(15 69 21 63)(16 68 22 62)(17 67 23 61)(18 66 24 72)(37 80 43 74)(38 79 44 73)(39 78 45 84)(40 77 46 83)(41 76 47 82)(42 75 48 81)(49 90 55 96)(50 89 56 95)(51 88 57 94)(52 87 58 93)(53 86 59 92)(54 85 60 91)
(1 13 52 82)(2 14 53 83)(3 15 54 84)(4 16 55 73)(5 17 56 74)(6 18 57 75)(7 19 58 76)(8 20 59 77)(9 21 60 78)(10 22 49 79)(11 23 50 80)(12 24 51 81)(25 63 91 45)(26 64 92 46)(27 65 93 47)(28 66 94 48)(29 67 95 37)(30 68 96 38)(31 69 85 39)(32 70 86 40)(33 71 87 41)(34 72 88 42)(35 61 89 43)(36 62 90 44)
(2 8)(4 10)(6 12)(13 82)(14 77)(15 84)(16 79)(17 74)(18 81)(19 76)(20 83)(21 78)(22 73)(23 80)(24 75)(25 28)(26 35)(27 30)(29 32)(31 34)(33 36)(37 70)(38 65)(39 72)(40 67)(41 62)(42 69)(43 64)(44 71)(45 66)(46 61)(47 68)(48 63)(49 55)(51 57)(53 59)(85 88)(86 95)(87 90)(89 92)(91 94)(93 96)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,33,7,27)(2,32,8,26)(3,31,9,25)(4,30,10,36)(5,29,11,35)(6,28,12,34)(13,71,19,65)(14,70,20,64)(15,69,21,63)(16,68,22,62)(17,67,23,61)(18,66,24,72)(37,80,43,74)(38,79,44,73)(39,78,45,84)(40,77,46,83)(41,76,47,82)(42,75,48,81)(49,90,55,96)(50,89,56,95)(51,88,57,94)(52,87,58,93)(53,86,59,92)(54,85,60,91), (1,13,52,82)(2,14,53,83)(3,15,54,84)(4,16,55,73)(5,17,56,74)(6,18,57,75)(7,19,58,76)(8,20,59,77)(9,21,60,78)(10,22,49,79)(11,23,50,80)(12,24,51,81)(25,63,91,45)(26,64,92,46)(27,65,93,47)(28,66,94,48)(29,67,95,37)(30,68,96,38)(31,69,85,39)(32,70,86,40)(33,71,87,41)(34,72,88,42)(35,61,89,43)(36,62,90,44), (2,8)(4,10)(6,12)(13,82)(14,77)(15,84)(16,79)(17,74)(18,81)(19,76)(20,83)(21,78)(22,73)(23,80)(24,75)(25,28)(26,35)(27,30)(29,32)(31,34)(33,36)(37,70)(38,65)(39,72)(40,67)(41,62)(42,69)(43,64)(44,71)(45,66)(46,61)(47,68)(48,63)(49,55)(51,57)(53,59)(85,88)(86,95)(87,90)(89,92)(91,94)(93,96)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,33,7,27)(2,32,8,26)(3,31,9,25)(4,30,10,36)(5,29,11,35)(6,28,12,34)(13,71,19,65)(14,70,20,64)(15,69,21,63)(16,68,22,62)(17,67,23,61)(18,66,24,72)(37,80,43,74)(38,79,44,73)(39,78,45,84)(40,77,46,83)(41,76,47,82)(42,75,48,81)(49,90,55,96)(50,89,56,95)(51,88,57,94)(52,87,58,93)(53,86,59,92)(54,85,60,91), (1,13,52,82)(2,14,53,83)(3,15,54,84)(4,16,55,73)(5,17,56,74)(6,18,57,75)(7,19,58,76)(8,20,59,77)(9,21,60,78)(10,22,49,79)(11,23,50,80)(12,24,51,81)(25,63,91,45)(26,64,92,46)(27,65,93,47)(28,66,94,48)(29,67,95,37)(30,68,96,38)(31,69,85,39)(32,70,86,40)(33,71,87,41)(34,72,88,42)(35,61,89,43)(36,62,90,44), (2,8)(4,10)(6,12)(13,82)(14,77)(15,84)(16,79)(17,74)(18,81)(19,76)(20,83)(21,78)(22,73)(23,80)(24,75)(25,28)(26,35)(27,30)(29,32)(31,34)(33,36)(37,70)(38,65)(39,72)(40,67)(41,62)(42,69)(43,64)(44,71)(45,66)(46,61)(47,68)(48,63)(49,55)(51,57)(53,59)(85,88)(86,95)(87,90)(89,92)(91,94)(93,96) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,33,7,27),(2,32,8,26),(3,31,9,25),(4,30,10,36),(5,29,11,35),(6,28,12,34),(13,71,19,65),(14,70,20,64),(15,69,21,63),(16,68,22,62),(17,67,23,61),(18,66,24,72),(37,80,43,74),(38,79,44,73),(39,78,45,84),(40,77,46,83),(41,76,47,82),(42,75,48,81),(49,90,55,96),(50,89,56,95),(51,88,57,94),(52,87,58,93),(53,86,59,92),(54,85,60,91)], [(1,13,52,82),(2,14,53,83),(3,15,54,84),(4,16,55,73),(5,17,56,74),(6,18,57,75),(7,19,58,76),(8,20,59,77),(9,21,60,78),(10,22,49,79),(11,23,50,80),(12,24,51,81),(25,63,91,45),(26,64,92,46),(27,65,93,47),(28,66,94,48),(29,67,95,37),(30,68,96,38),(31,69,85,39),(32,70,86,40),(33,71,87,41),(34,72,88,42),(35,61,89,43),(36,62,90,44)], [(2,8),(4,10),(6,12),(13,82),(14,77),(15,84),(16,79),(17,74),(18,81),(19,76),(20,83),(21,78),(22,73),(23,80),(24,75),(25,28),(26,35),(27,30),(29,32),(31,34),(33,36),(37,70),(38,65),(39,72),(40,67),(41,62),(42,69),(43,64),(44,71),(45,66),(46,61),(47,68),(48,63),(49,55),(51,57),(53,59),(85,88),(86,95),(87,90),(89,92),(91,94),(93,96)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E6F6G8A8B8C8D12A···12F
order12222234444444446666666888812···12
size111188222224121212122228888121212124···4

33 irreducible representations

dim1111112222222244444
type++++++++++++-+-
imageC1C2C2C2C2C2S3D4D4D6D6SD16C4oD4C3:D4C8:C22D4.S3S3xD4D4:2S3D12:6C22
kernelDic6:9D4C12:C8D4:Dic3C4xDic6C2xD4.S3C3xC4:1D4C4:1D4Dic6C2xC12C42C2xD4C12C12C2xC4C6C4C4C4C2
# reps1121211221242412112

Matrix representation of Dic6:9D4 in GL6(F73)

900000
0650000
0072000
0007200
000001
0000720
,
010000
100000
0002700
0046000
0000667
00006767
,
7200000
0720000
0007200
001000
0000720
0000072
,
100000
0720000
001000
0007200
000010
0000072

G:=sub<GL(6,GF(73))| [9,0,0,0,0,0,0,65,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,46,0,0,0,0,27,0,0,0,0,0,0,0,6,67,0,0,0,0,67,67],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72] >;

Dic6:9D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes_9D_4
% in TeX

G:=Group("Dic6:9D4");
// GroupNames label

G:=SmallGroup(192,634);
// by ID

G=gap.SmallGroup(192,634);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,120,254,219,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=a^-1,a*c=c*a,d*a*d=a^7,b*c=c*b,d*b*d=a^9*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<