Copied to
clipboard

G = C3⋊C823D4order 192 = 26·3

5th semidirect product of C3⋊C8 and D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C3⋊C823D4, C34(C88D4), C4⋊C4.61D6, (C2×C6)⋊4SD16, (C2×D4).41D6, C4⋊D4.6S3, C4.172(S3×D4), C6.98(C4○D8), (C2×C12).264D4, C12.150(C2×D4), C6.56(C2×SD16), (C22×C6).87D4, D4⋊Dic317C2, C6.SD1635C2, C6.95(C4⋊D4), C222(D4.S3), C12.Q836C2, (C6×D4).57C22, (C22×C4).357D6, C12.185(C4○D4), C12.48D424C2, C4.61(D42S3), (C2×C12).360C23, C23.47(C3⋊D4), C2.17(Q8.13D6), C4⋊Dic3.144C22, C2.16(C23.14D6), (C22×C12).164C22, (C2×Dic6).103C22, (C22×C3⋊C8)⋊4C2, (C2×D4.S3)⋊10C2, (C3×C4⋊D4).5C2, (C2×C6).491(C2×D4), C2.10(C2×D4.S3), (C2×C3⋊C8).249C22, (C2×C4).106(C3⋊D4), (C3×C4⋊C4).108C22, (C2×C4).460(C22×S3), C22.166(C2×C3⋊D4), SmallGroup(192,600)

Series: Derived Chief Lower central Upper central

C1C2×C12 — C3⋊C823D4
C1C3C6C12C2×C12C2×Dic6C12.48D4 — C3⋊C823D4
C3C6C2×C12 — C3⋊C823D4
C1C22C22×C4C4⋊D4

Generators and relations for C3⋊C823D4
 G = < a,b,c,d | a3=b8=c4=d2=1, bab-1=a-1, ac=ca, ad=da, cbc-1=b3, bd=db, dcd=c-1 >

Subgroups: 320 in 124 conjugacy classes, 45 normal (39 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, SD16, C22×C4, C2×D4, C2×D4, C2×Q8, C3⋊C8, C3⋊C8, Dic6, C2×Dic3, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, D4⋊C4, Q8⋊C4, C4.Q8, C4⋊D4, C22⋊Q8, C22×C8, C2×SD16, C2×C3⋊C8, C2×C3⋊C8, Dic3⋊C4, C4⋊Dic3, D4.S3, C6.D4, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, C22×C12, C6×D4, C6×D4, C88D4, C12.Q8, C6.SD16, D4⋊Dic3, C22×C3⋊C8, C12.48D4, C2×D4.S3, C3×C4⋊D4, C3⋊C823D4
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C4○D4, C3⋊D4, C22×S3, C4⋊D4, C2×SD16, C4○D8, D4.S3, S3×D4, D42S3, C2×C3⋊D4, C88D4, C2×D4.S3, C23.14D6, Q8.13D6, C3⋊C823D4

Smallest permutation representation of C3⋊C823D4
On 96 points
Generators in S96
(1 46 61)(2 62 47)(3 48 63)(4 64 41)(5 42 57)(6 58 43)(7 44 59)(8 60 45)(9 86 34)(10 35 87)(11 88 36)(12 37 81)(13 82 38)(14 39 83)(15 84 40)(16 33 85)(17 28 93)(18 94 29)(19 30 95)(20 96 31)(21 32 89)(22 90 25)(23 26 91)(24 92 27)(49 75 71)(50 72 76)(51 77 65)(52 66 78)(53 79 67)(54 68 80)(55 73 69)(56 70 74)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 74 91 16)(2 77 92 11)(3 80 93 14)(4 75 94 9)(5 78 95 12)(6 73 96 15)(7 76 89 10)(8 79 90 13)(17 39 48 54)(18 34 41 49)(19 37 42 52)(20 40 43 55)(21 35 44 50)(22 38 45 53)(23 33 46 56)(24 36 47 51)(25 82 60 67)(26 85 61 70)(27 88 62 65)(28 83 63 68)(29 86 64 71)(30 81 57 66)(31 84 58 69)(32 87 59 72)
(1 16)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(8 15)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 49)(25 69)(26 70)(27 71)(28 72)(29 65)(30 66)(31 67)(32 68)(33 46)(34 47)(35 48)(36 41)(37 42)(38 43)(39 44)(40 45)(57 81)(58 82)(59 83)(60 84)(61 85)(62 86)(63 87)(64 88)(73 90)(74 91)(75 92)(76 93)(77 94)(78 95)(79 96)(80 89)

G:=sub<Sym(96)| (1,46,61)(2,62,47)(3,48,63)(4,64,41)(5,42,57)(6,58,43)(7,44,59)(8,60,45)(9,86,34)(10,35,87)(11,88,36)(12,37,81)(13,82,38)(14,39,83)(15,84,40)(16,33,85)(17,28,93)(18,94,29)(19,30,95)(20,96,31)(21,32,89)(22,90,25)(23,26,91)(24,92,27)(49,75,71)(50,72,76)(51,77,65)(52,66,78)(53,79,67)(54,68,80)(55,73,69)(56,70,74), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,74,91,16)(2,77,92,11)(3,80,93,14)(4,75,94,9)(5,78,95,12)(6,73,96,15)(7,76,89,10)(8,79,90,13)(17,39,48,54)(18,34,41,49)(19,37,42,52)(20,40,43,55)(21,35,44,50)(22,38,45,53)(23,33,46,56)(24,36,47,51)(25,82,60,67)(26,85,61,70)(27,88,62,65)(28,83,63,68)(29,86,64,71)(30,81,57,66)(31,84,58,69)(32,87,59,72), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,89)>;

G:=Group( (1,46,61)(2,62,47)(3,48,63)(4,64,41)(5,42,57)(6,58,43)(7,44,59)(8,60,45)(9,86,34)(10,35,87)(11,88,36)(12,37,81)(13,82,38)(14,39,83)(15,84,40)(16,33,85)(17,28,93)(18,94,29)(19,30,95)(20,96,31)(21,32,89)(22,90,25)(23,26,91)(24,92,27)(49,75,71)(50,72,76)(51,77,65)(52,66,78)(53,79,67)(54,68,80)(55,73,69)(56,70,74), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,74,91,16)(2,77,92,11)(3,80,93,14)(4,75,94,9)(5,78,95,12)(6,73,96,15)(7,76,89,10)(8,79,90,13)(17,39,48,54)(18,34,41,49)(19,37,42,52)(20,40,43,55)(21,35,44,50)(22,38,45,53)(23,33,46,56)(24,36,47,51)(25,82,60,67)(26,85,61,70)(27,88,62,65)(28,83,63,68)(29,86,64,71)(30,81,57,66)(31,84,58,69)(32,87,59,72), (1,16)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(8,15)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,49)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)(33,46)(34,47)(35,48)(36,41)(37,42)(38,43)(39,44)(40,45)(57,81)(58,82)(59,83)(60,84)(61,85)(62,86)(63,87)(64,88)(73,90)(74,91)(75,92)(76,93)(77,94)(78,95)(79,96)(80,89) );

G=PermutationGroup([[(1,46,61),(2,62,47),(3,48,63),(4,64,41),(5,42,57),(6,58,43),(7,44,59),(8,60,45),(9,86,34),(10,35,87),(11,88,36),(12,37,81),(13,82,38),(14,39,83),(15,84,40),(16,33,85),(17,28,93),(18,94,29),(19,30,95),(20,96,31),(21,32,89),(22,90,25),(23,26,91),(24,92,27),(49,75,71),(50,72,76),(51,77,65),(52,66,78),(53,79,67),(54,68,80),(55,73,69),(56,70,74)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,74,91,16),(2,77,92,11),(3,80,93,14),(4,75,94,9),(5,78,95,12),(6,73,96,15),(7,76,89,10),(8,79,90,13),(17,39,48,54),(18,34,41,49),(19,37,42,52),(20,40,43,55),(21,35,44,50),(22,38,45,53),(23,33,46,56),(24,36,47,51),(25,82,60,67),(26,85,61,70),(27,88,62,65),(28,83,63,68),(29,86,64,71),(30,81,57,66),(31,84,58,69),(32,87,59,72)], [(1,16),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(8,15),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,49),(25,69),(26,70),(27,71),(28,72),(29,65),(30,66),(31,67),(32,68),(33,46),(34,47),(35,48),(36,41),(37,42),(38,43),(39,44),(40,45),(57,81),(58,82),(59,83),(60,84),(61,85),(62,86),(63,87),(64,88),(73,90),(74,91),(75,92),(76,93),(77,94),(78,95),(79,96),(80,89)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F 3 4A4B4C4D4E4F4G6A6B6C6D6E6F6G8A···8H12A12B12C12D12E12F
order12222223444444466666668···8121212121212
size1111228222228242422244886···6444488

36 irreducible representations

dim111111112222222222224444
type++++++++++++++++--
imageC1C2C2C2C2C2C2C2S3D4D4D4D6D6D6C4○D4SD16C3⋊D4C3⋊D4C4○D8S3×D4D42S3D4.S3Q8.13D6
kernelC3⋊C823D4C12.Q8C6.SD16D4⋊Dic3C22×C3⋊C8C12.48D4C2×D4.S3C3×C4⋊D4C4⋊D4C3⋊C8C2×C12C22×C6C4⋊C4C22×C4C2×D4C12C2×C6C2×C4C23C6C4C4C22C2
# reps111111111211111242241122

Matrix representation of C3⋊C823D4 in GL6(𝔽73)

100000
010000
001000
000100
0000640
0000208
,
6760000
67670000
0013600
0047200
000094
00001664
,
100000
0720000
00272300
0004600
0000720
0000411
,
100000
010000
00272300
00354600
0000720
0000072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,20,0,0,0,0,0,8],[67,67,0,0,0,0,6,67,0,0,0,0,0,0,1,4,0,0,0,0,36,72,0,0,0,0,0,0,9,16,0,0,0,0,4,64],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,27,0,0,0,0,0,23,46,0,0,0,0,0,0,72,41,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,27,35,0,0,0,0,23,46,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

C3⋊C823D4 in GAP, Magma, Sage, TeX

C_3\rtimes C_8\rtimes_{23}D_4
% in TeX

G:=Group("C3:C8:23D4");
// GroupNames label

G:=SmallGroup(192,600);
// by ID

G=gap.SmallGroup(192,600);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,253,254,219,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^4=d^2=1,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=b^3,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽